Skip to main content

The Assay for Iron in Soils and Clay Minerals

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

Assay is defined as, inter alia, “the determination of the quantity of metal in an ore or alloy,” and derives from the Latin exagium meaning “weighing.” Assay is thus concerned with quantitative determination on a mass-for-mass basis.

Ay me! what perils do environ

The man that meddles with cold iron Samuel

Butler, 1612–1680

(Hudibras: I.iii.1)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Abbey, S. 1981. Reliability in the analysis of rocks and minerals. Anal. Chem. 53:528A–534A.

    CAS  Google Scholar 

  2. Abbey, S., and J. A. Maxwell. 1960. Determination of potassium in micas. Chemistry in Canada 12:37–41.

    CAS  Google Scholar 

  3. Abbey, S., N. J. Lee, and J. L. Bouvier. 1974. Analysis of rocks and minerals using an atomic absorption spectrophotometer. 5: Improved lithium fluoborate scheme for fourteen elements. Geol. Surv. Can. Paper 74–19 Department of Energy and Mineral Resources, Ottawa, Canada.

    Google Scholar 

  4. Abdallah, A. M., M. M. El-Defrawy, M. A. Mostafa, and A. B. Sokla. 1985. Characterization and elimination of the interfering effects of foreign species in the atomic-absorption determination of iron. Talanta 32:19–22.

    CAS  Google Scholar 

  5. Abdullah, K. A., Y. I. Hasson, A. M. Al-Daher, and W. A. Bashir. 1981. Reagent for the spectrophotometric determination of iron(II) in alkaline solution. Analyst 106:1348–1351.

    CAS  Google Scholar 

  6. Adams, R. 1974. Soil Solution, p. 441–506. In E. W. Carson (ed.)The Plant Root and Its Environment University of Virginia Press, Charlottesville.

    Google Scholar 

  7. Adams, J. M., and S. Evans. 1979. Exchange and selective surface uptake of cations by layered silicates using X-ray photoelectron spectroscopy (X.P.S.). Clays Clay Miner 27:248–252.

    CAS  Google Scholar 

  8. Adams, J. M., S. Evans, P. I. Reid, J. M. Thomas, and M. J. Walters. 1977. Quantitative analysis of aluminosilicates and other solids by X-ray photoelectron spectroscopy. Anal. Chem. 49:2001–2008.

    CAS  Google Scholar 

  9. Antweiler, J. C. 1961. Methods for decomposing silicate rock fragments. U.S. Geol. Surv. Prof. Paper 424-B:322–324.

    Google Scholar 

  10. Avery, B. W., and C. L. Bascomb. 1982. Soil Survey Laboratory Methods. Technical Monograph of the Soil Survey No. 6 Soil Survey of England and Wales, Harpenden, England.

    Google Scholar 

  11. Bacon, J. R., and A. M. Ure. 1984. Spark-source mass spectrometry: recent developments and applications. Analyst 109:1229–1254.

    CAS  Google Scholar 

  12. Ballantyne, A. K., D. W. Anderson, and H. B. Stonehouse. 1980. Problems associated with extracting Fe and Ai from Saskatchewan soils by pyrophosphate and low speed centrifugation. Can. J. Soil Sci. 60:141–143.

    CAS  Google Scholar 

  13. Bancroft, G. M., J. R. Brown, and W. S. Fyfe. 1979. Advances in, and applications of, X-ray photoelectron spectroscopy (ESCA) in mineralogy and geochemistry. Chem. Geol. 25:227–243.

    CAS  Google Scholar 

  14. Bandemer, S. L., and P. J. Schaible. 1944. Determination of iron: a study of the o-phenanthroline method. Ind. Eng. Chem. Anal. Edn. 16:317–319.

    CAS  Google Scholar 

  15. Barredo, F. B., and L. P. Diez. 1976. Optimization of silicate rock decomposition for determination of major elements by atomic-absorption spectrophotometry. Talanta 23:859–861.

    CAS  Google Scholar 

  16. Bascomb, C. L. 1968. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19:251–268.

    CAS  Google Scholar 

  17. Begheijn, L. T. 1979. Determination of iron(II) in rock, soil and clay. Analyst 105:1055–1061.

    Google Scholar 

  18. Benians, G., P. Scullion, and G. R. Fitzhugh. 1977. Concentrations and activities of ions in solutions displaced from basaltic soils. J. Soil Sci. 28:454–461.

    CAS  Google Scholar 

  19. Bennett, J. N., and J. N. Grant. 1980. Analysis of fluid inclusions using a pulsed laser microprobe. Mineral. Mag. 43:945–947.

    Google Scholar 

  20. Bernas, B. 1968. A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chem. 40:1682–1686.

    CAS  Google Scholar 

  21. Berzelius, J. J. 1841. Lehrbuch der Chemie - Analyse. Vol. 10 Leipzig, Germany, p. 46.

    Google Scholar 

  22. Beyer, M. E., A. M. Bond, and R. J. W. Maughlin. 1975. Simultaneous polarographic determination of ferrous, ferric and total iron in standard rocks. Anal. Chem. 47:479–482.

    CAS  Google Scholar 

  23. Bisdom, E. B. A., S. Henstra, A. Jongerius, H. J. Heinen, and S. Meier. 1981. Chemical element detection in thin sections of soils with the laser microprobe mass analyser (LAMMA 500). Neth. J. Agric. Sci. 29:23–36.

    CAS  Google Scholar 

  24. Black, M. S., and R. F. Browner. 1981. Volatile metal-chelate sample introduction for inductively coupled plasma-atomic emission spectrometry. Anal. Chem. 53:249–253.

    CAS  Google Scholar 

  25. Blakemore, L. C., P. L. Searle, and B. K. Daly. 1977. Methods for chemical analysis for soils. Scientific Report 10A New Zealand Soil Bureau, Wellington, New Zealand.

    Google Scholar 

  26. Bloomfield, C. 1962. A colorimetric method for determining total sulphur in soils. Analyst 87:586–589.

    CAS  Google Scholar 

  27. Bloomfield, C. 1972. The oxidation of iron sulphides in soils in relation to the formation of acid sulphate soils, and of ochre deposits in field drains. J. Soil Sci. 23:1–16.

    CAS  Google Scholar 

  28. Bock, R., and I. L. Marr. 1979. A Handbook of Decomposition Methods in Analytical Chemistry Halsted Press, New York.

    Google Scholar 

  29. de Boer, G. J., and H. M. Reisenauer. 1973. DTPA as an extractant of available soil iron. Comm. Soil Plant Anal. 4:121–128.

    Google Scholar 

  30. Borggaard, O. K. 1979. Selective extraction of amorphous iron oxides by EDTA from a Danish sandy loam. J. Soil Sci. 30:727–734.

    CAS  Google Scholar 

  31. Borggaard, O. K. 1987. Phase identification by selective dissolution techniques, p. 82–98. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  32. Brinkman, R. 1977. Surface-water gley soils in Bangladesh: Genesis. Geoderma 17:111–144.

    CAS  Google Scholar 

  33. British Standards Institution. 1975. Methods of test for soils for civil engineering purposes. Standard BS 1377. British Standards Institution, London.

    Google Scholar 

  34. Bruckert, S., and B. Souchier. 1975. Mise au point d’un test de differenciation chimique des horizons cambiques et spodiques. C.R. Acad. Sci. Paris, Ser. D. 280:1361–1364.

    CAS  Google Scholar 

  35. CAB. 1964. Bibliography on the Determination of Iron in Soils (1964–1955). No. 876 Commonwealth Bureau of Soils, Harpenden, England.

    Google Scholar 

  36. CAB. 1968. Bibliography on the Chemical Determination of iron and Maganese Manganese in Soil (1968–1961). No. 1224 Commonwealth Bureau of Soils, Harpenden, England.

    Google Scholar 

  37. CAB. 1974. Annotated Bibliography on the Chemical Determination of Iron and Manganese in Soil and Plant Material (1974–1968) No. 1681 Commonwealth Bureau of Soils, Harpenden, England.

    Google Scholar 

  38. Campbell, A. S., J. A. Adams, and D. T. Howarth. 1972. Some problems encountered in the identification of plumbogummite minerals in soils. Clay Miner. 9:415–423.

    CAS  Google Scholar 

  39. Canada Soil Survey Committee, Subcommittee on Methods of Soil Analysis. 1976. Manual on Soil Sampling and Methods of Analysis J. A. Meague (ed.). Ottawa Soil Research Institute.

    Google Scholar 

  40. Canesson, P. 1982. E.S.C.A. studies of clay minerals, p. 211–226. In J. J. Fripiat (ed.) Advanced Techniques for Clay Mineral Analysis. Developments in Sedimentology, Vol 24. Elsevier, Amsterdam.

    Google Scholar 

  41. Chalmers, R. A. (ed.) 1982. Gains and losses: Errors in trace analysis. Talanta 29:963–1055.

    Google Scholar 

  42. Chao, T. T., and Zhou, L. 1983. Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci. Soc. Am. J. 47:225–232.

    CAS  Google Scholar 

  43. Childs, C. W. 1981. Field tests for ferrous iron and ferric-organic complexes (on exchange sites or in water-soluble forms) in soils. Austr. J. Soil Res. 19:175–180.

    CAS  Google Scholar 

  44. Chu, T. C., V. R. Navarette, H. Kaji, G. Izawa, T. Shiokawa, K. Ishii, S. Morita, and H. Tawara, H. 1977. A study of proton induced X-ray analysis and its application to environmental samples. J. Radioanal. Chem 36:195–207.

    CAS  Google Scholar 

  45. Collins, P. F., H. Diehl, and G. F. Smith. 1959. 2,4,6-tripyridyl-s-triazine as a reagent for iron. Anal. Chem. 31:1862–1867.

    CAS  Google Scholar 

  46. Cook, J. M., and D. L. Miles. 1980. Methods for the chemical analysis of groundwater. Institute of Geological Sciences Report No. 80/5. H.M.S.O., London.

    Google Scholar 

  47. Cookson, J. A., J. W. McMillan, and T. B. Pierce. 1979. The nuclear microprobe as an analytical tool. J. Radioanal. Chem. 48:337–357.

    CAS  Google Scholar 

  48. Crawley, R. H. A., and M. L. Aspinall. 1955. Determination of impurities in tungsten metal II. Determination of iron. Anal. Chim. Acta 13:376–378.

    CAS  Google Scholar 

  49. Daly, B. K., and H. J. Binnie. 1974. A leaching method for the extraction of acid oxalate-soluble aluminium and iron from soil in conjunction with cation exchange leachings. Comm. Soil Plant Anal. 5:507–514.

    CAS  Google Scholar 

  50. Dana, J. D., and E. S. Dana. 1951. System of mineralogy, p. 395–634. In C. Palache, H. Berman, and C. Frondel (eds.) Sulfates, Vol. 2, Seventh Edition Wiley-Interscience, New York.

    Google Scholar 

  51. Deloule, E., and J. F. Eloy. 1982. Improvements of laser probe mass spectrometry for the chemical analysis of fluid inclusions in ores. Chem. Geol. 37:191–202.

    CAS  Google Scholar 

  52. Duchaufour, P., and B. Souchier. 1966. Note sur une méthode d’extraction combinée de l’aluminium et du fer libre dans les sols. Science du Sol 1:17–29.

    Google Scholar 

  53. Duerden, P., D. D. Cohen, E. Clayton, and J. R. Bird. 1979. Elemental analysis of thick obsidian samples by proton induced X-ray emission spectrometry. Anal. Chem. 51:2350–2354.

    CAS  Google Scholar 

  54. Edmunds, W. M., and A. H. Bath. 1976. Centrifuge extraction and chemical analysis of interstitial waters. Environ. Sci. Technol. 10: 467–72.

    CAS  Google Scholar 

  55. Eilingham, H. J. T. 1944. Reducibility of oxides and sulphides in metallurgical processes. J. Soc. Chem. Ind. 63:125–133.

    Google Scholar 

  56. Ericsson, T., J. Linares, and E. Lotse. 1984. A Mossbauer study of the effect of dithionite/citrate/bicarbonate treatment on a vermiculite, a smectite and a soil. Clay Miner. 19:85–91.

    CAS  Google Scholar 

  57. Estep, P. A., J. J. Kovach, and C. Karr. 1968. Quantitative infrared multi-component determination of minerals occuring in coal. Anal. Chem. 40:358–363.

    CAS  Google Scholar 

  58. Everett, K., and F. A. Graf. 1971. Handling perchloric acid and perchlorates. p. 265–276. In N. V. Steere (ed.) Handbook of Laboratory Safety, Second Edition Chemical Rubber Co., Cleveland.

    Google Scholar 

  59. Farmer, V. C., J. D. Russell, and B. F. Smith. 1983. Extraction of inorganic forms of translocated Al, Fe, and Si from a podzol Bs horizon. J. Soil Sci. 34:571–576.

    CAS  Google Scholar 

  60. Fejdi, P. 1982. Electron microprobe analysis of rock minerals determination of iron(2+) and iron(3+). Miner. Slovaca. 14:145–154.

    CAS  Google Scholar 

  61. Fitton, J. G., and R. C. O. Gill. 1970. The oxidation of ferrous iron in rocks during mechanical grinding. Geochim. Cosmochim. Acta 34: 518–524.

    CAS  Google Scholar 

  62. Flanagan, F. J. 1983. 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta 37:1189–1200.

    Google Scholar 

  63. French, W. J., and S. J. Adams. 1972. A rapid method for the extraction and determination of iron(II) in silicate rocks and minerals. Analyst 97:828–831.

    CAS  Google Scholar 

  64. French, W. J., and S. J. Adams. 1973. Polypropylene bottles in the decomposition of silicate rocks. Anal. Chim. Acta. 62:324–328.

    Google Scholar 

  65. Fujino, K., T. Yamanaka, and Y. Takeuchi. 1976. The measurement of iron(2+) and iron(3+) in oxide and silicate minerals by electron probe microanalysis. Kobutsugaku Zasshi 12:111–115.

    CAS  Google Scholar 

  66. Gilliard, R. D. 1985. The determination of ferrous and ferric iron in rocks and minerals - a comment. Mineral. Mag. 49:101–102.

    Google Scholar 

  67. Giovannini, G., and P. Sequi. 1976. Iron and aluminium as cementing substances of soil aggregates I. Acetylacetone in benzene as an extractant of fractions of soil iron and aluminium. J. Soil Sci. 27: 140–141.

    CAS  Google Scholar 

  68. Gonsior, B., and M. Roth. 1983. Trace element analysis by particle and photo-induced X-ray emission spectroscopy. Talanta 30:385–400.

    CAS  Google Scholar 

  69. Goodman, B. A. 1980. Mössbauer spectroscopy, p. 1–92. In J. W. Stucki and W. L. Banwart (eds.) Advanced Chemical Methods for Soil and Clay Minerals Research D. Reidel, Dordrecht.

    Google Scholar 

  70. Gorsuch, T. T. 1970. The Destruction of Organic Matter Pergamon Press, Oxford.

    Google Scholar 

  71. Griffiths, J. C. 1967. Scientific Method in the Analysis of Sediments. McGraw-Hill, New York.

    Google Scholar 

  72. Hålenius, U., and K. Langer. 1980. Microscope-photometric methods for non-destructive Fe 2+-Fe 3+ determination in chloritoids (Fe, Mn 2+, Mg)2 (Al, Fe 3+)4 Si2 O10(OH)4. Lithos 13:291–294.

    Google Scholar 

  73. Hannaker, P., and H. Q. Lie. 1984. Dissolution of geological material with orthophosphoric acid for major-element determination by flame atomic absorption spectroscopy and inductively-coupled plasma atomic-emission spectroscopy. Talanta 31:1153–1157.

    CAS  Google Scholar 

  74. Hesse, P. 1971. A Text Book of Soil Chemical Analysis John Murray, London.

    Google Scholar 

  75. Hétier, J. M., and E. Jeanroy. 1973. Solubilisation différentielle du fer, de la silice et de l’alumine par le réactif oxalate-dithionite et lasoude diluée. Pédologie 23:85–99.

    Google Scholar 

  76. Hillebrand, W. F., G. E. F. Lundell, H. A. Bright, and J. I. Hoffman. 1953. Applied Inorganic Analysis: With Special Reference to the Analysis of Metals, Minerals and Rocks, Second Edition. Wiley, New York.

    Google Scholar 

  77. Holmgren, G. G. S. 1967. A rapid citrate-dithionite extractable iron procedure. Soil Sci. Soc. Am. Proc 31:210–211.

    CAS  Google Scholar 

  78. Hume, D. N., and I. M. Kolthoff. 1957. The use of cacolethine as an oxidation-reduction indicator before the volumetric oxidation of iron. Anal. Chim. Acta. 15:415–418.

    Google Scholar 

  79. Hutchinson, C. A. 1974. Laboratory Handbook of Petrographic Techniques Wiley, New York.

    Google Scholar 

  80. Hutton, J. T., and S. M. Elliott. 1980. An accurate XRF method for the analysis of geochemical exploration samples for major and trace elements using one glass disc. Chem. Geol. 29:7–11.

    Google Scholar 

  81. Ingamells, C. O. 1966. Absorptiometric methods in rapid silicate analysis. Anal. Chem. 38:1228–1234.

    CAS  Google Scholar 

  82. Jackson, M. L. 1958. Soil Chemical Analysis. Prentice-Hall, New York.

    Google Scholar 

  83. Jackson, M. L. 1975. Soil Chemical Analysis — Advanced Course, Second Edition Published by the Author, Madison, Wisconsin.

    Google Scholar 

  84. Jansen, W., and M. Slaughter. 1982. Elemental mapping of minerals by electron microprobe. Am. Mineral. 67:521–533.

    CAS  Google Scholar 

  85. Jayman, T. C. Z., S. Sivasubramaniam, and M. A. Wijedasa. 1975. Elimination of interference from aluminium in the determination of total iron in soils and plant materials using 1,10-phenanthroline reagent. Analyst 100:716–720.

    CAS  Google Scholar 

  86. Jeanroy, E. 1973. Analyse totale par spéctrométrie d’adsoprtion atomique des roches, sols, minérals, ciments aprés fusion au métaborate de strontium. Analusis 2:703–712.

    Google Scholar 

  87. Jeffery, P. G. 1975. Chemical Methods of Rock Analysis, Second Edition Pergamon Press, Oxford.

    Google Scholar 

  88. Jeffery, P. G., and D. Hutchison. 1981. Chemical Methods of Rock Analysis, Third Edition Pergamon Press, Oxford.

    Google Scholar 

  89. Jochum, K. P., M. Senfert, and H. J. Knab. 1981. Quantitative multi-element analysis of geochemical and cosmochemical samples using spark source mass spectrometry. Fresenius Z. Anal. Chem 309:285–290.

    CAS  Google Scholar 

  90. Keeling, P. S. 1962. Some experiments in the low-temperature removal of carbonaceous material from clay. Clay Miner. Bull. 5: 155–158.

    CAS  Google Scholar 

  91. Kinniburgh, D. G., and D. L. Miles. 1983. Extraction and chemical analysis of interstitial water from soils and rocks. Environ. Sci. Technol. 17:362–368.

    CAS  Google Scholar 

  92. Kirchner, S. J., H. Oona, S. J. Perron, Q. Fernando, J. J. Lee, and H. Zeitlin. 1980. Proton induced X-ray emission analysis of deep-sea ferromanganese nodules. Anal. Chem. 52:2195–2201.

    CAS  Google Scholar 

  93. Kiss, E. 1974. Synthesis of sulphonated ferroin reagent for chelating iron(II) in strong acid. Anal. Chim. Acta 72:127–144.

    CAS  Google Scholar 

  94. Kiss, E. 1977. Rapid potentiometric determination of the iron oxidation state in silicates. Anal. Chim. Acta 89:303–314.

    CAS  Google Scholar 

  95. Kiss, E. 1984. Investigation of some asymmetric triazines as reagents for the spectrophotometric micro-determination of the iron oxidation state in silicates. Anal. Chim. Acta 161:231–244.

    CAS  Google Scholar 

  96. Koppelman, M. H., and Dillard, J. G. 1978. The application of X-ray photoelectron spectroscopy (XPS or ESCA) to the study of mineral surface chemistry, p. 153–166. In M. M. Mortland and V. C. Farmer (eds.) Proc Int. Clay Conf., Oxford, 1978 Elsevier, Amsterdam.

    Google Scholar 

  97. Kullerud, G., R. M. Steffen, P. C. Simms, and F. A. Rickey. 1979. Proton induced X-ray emission (PIXE) - a new tool in geochemistry. Chem. Geol. 25:245–256.

    CAS  Google Scholar 

  98. Langmyhr, F. J., and P. R. Graff. 1965. A Contribution to the Analytical Chemistry of Silicate Rocks: a Scheme of Analysis for Eleven Main Constituents Based on Decomposition by Hydrofluoric Acid. Report No. 230 Norges Geologiske Undersøkelse, Oslo, Norway.

    Google Scholar 

  99. Langmyhr, F. J., and K. Kringstad. 1965. An investigation of the composition of the precipitates formed by the decomposition of silicate rock in 38–40% hydrofluoric acid. Anal. Chim. Acta 35: 131–135.

    Google Scholar 

  100. Langmyhr, F. J., and P. E. Paus. 1968. The analysis of inorganic siliceous materials by atomic absorption spectrophotometry and the hydrofluoric acid decomposition technique, Part 1: The analysis of silicate rocks. Anal. Chim. Acta 43:397–408.

    CAS  Google Scholar 

  101. Langmyhr, F. J., and S. Sveen. 1965. Decomposability in hydrofluoric acid of the main and some minor and trace minerals of silicate rocks. Anal. Chim. Acta 32:1–7.

    CAS  Google Scholar 

  102. Leggett, G. E., and D. P. Argyle. 1983. The DTPA-extractable iron, manganese, copper, and zinc from neutral and calcareous soils dried under different conditions. Soil Sci. Soc. Am. J. 47:518–522.

    CAS  Google Scholar 

  103. Lim, C. H., and M. L. Jackson. 1982. Dissolution for total elemental analysis, p. 1–12. In A. L. Page (ed.) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Monograph No 9. American Society of Agronomy, Madison.

    Google Scholar 

  104. Lindsay, W. L., and W. A. Norvell. 1969. Development of a DTPA micronutrient test. Agron. Abstr. 1969:84.

    Google Scholar 

  105. Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 42:421–428.

    CAS  Google Scholar 

  106. Loeppert, R. H. 1987. Chemistry of iron in calcareous systems, p. 689–713. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  107. Long, J. V. P. 1977. Electron probe microanalysis, p. 273–342. In J. Zussman (ed.) Physical Methods in Determinative Mineralogy, Second Edition Academic Press, London.

    Google Scholar 

  108. Lorimer, G. W., N. A. Razik, and G. Cliff. 1973. The use of the analytical electron microscope EMMA-4 to study the solute distribution in thin foils: some application to metals and minerals. J. Microsc 99:153–164.

    Google Scholar 

  109. Loveland, P. J., and V. C. Bendelow. 1984. Celadonite-aluminous-glauconite: an example from the Lake District, U.K. Mineral. Mag. 48:113–117.

    CAS  Google Scholar 

  110. Loveland, P. J., and P. Bullock. 1976. Chemical and mineralogical properties of brown podzolic soils in comparison with soils of other groups J. Soil Sci. 27:523–40.

    CAS  Google Scholar 

  111. Loveland, P. J., and P. G. Digby. 1984. The extraction of Fe and Ai by 0.1 M pyrophosphate solutions: a comparison of some techniques. J. Soil Sci. 35:243–250.

    CAS  Google Scholar 

  112. Malissa, H., and E. Schoffmann. 1955. The use of substituted dithio-carbamates in microchemical analysis III. Mikrochim. Acta 1:187–202.

    Google Scholar 

  113. May, I., and J. J. Rowe. 1965. Solution of rocks and refractory minerals by acids at high temperatures and pressures. Anal. Chim. Acta 33:648–654.

    CAS  Google Scholar 

  114. McIntyre, N. S., and D. G. Zetaruk. 1977. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49:1521–1529.

    CAS  Google Scholar 

  115. McKeague, J. A. 1967. An evaluation of 0.1 M pyrophosphate and pyrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci. 47:95–99.

    CAS  Google Scholar 

  116. McKeague, J. A., and J. H. Day. 1966. Dithionite- and oxalate- extractable Fe and A1 as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13–22.

    CAS  Google Scholar 

  117. McKeague, J. A., and B. H. Sheldrick. 1977. Sodium hydroxide-tetraborate in comparison with sodium pyrophosphate as an extractant of “complexes” characteristic of spodic horizons. Geoderma 19:97–104.

    CAS  Google Scholar 

  118. McLaughlin, R. J. W. 1977. Atomic absorption spectroscopy, p. 371–389. In J. Zussman (ed.) Physical Methods in Determinative Mineralogy, Second Edition Academic Press, London.

    Google Scholar 

  119. Mehra, O. P., and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. p. 317–327. In Ada Swineford (ed.) Clays and Clay Minerals, Proc. 7th Natl. Conf, Washington, D. C Pergamon Press, New York.

    Google Scholar 

  120. Mellor, J. W. 1932. A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Vol. 12 Longmans, Green and Co., London, p. 482–520.

    Google Scholar 

  121. Mercy, E. L. P., and M. J. Saunders. 1966. Precision and accuracy in the chemical determination of total Fe and A1 in silicate rocks. Earth Planetary Sci. Lett. 1:169–182.

    CAS  Google Scholar 

  122. Mitchell, B. D., B. F. L. Smith, and A. S. de Endredy. 1971. The effect of buffered sodium dithionite solution and ultrasonic agitation on soil clays. Israel. J. Chem. 9:45–52.

    CAS  Google Scholar 

  123. Moss, M. L., and M. G. Mellon. 1942. Colorimetric determination of iron with 2,2′-bipyridyl and 2,2′,2”-terpyridyl. Ind. Eng. Chem. Anal. Edn. 14: 862–965.

    CAS  Google Scholar 

  124. Mullins, C. E., and B. J. Hutchinson. 1982. The variability introduced by various subsampling techniques. J. Soil Sci. 33:547–562.

    Google Scholar 

  125. Murad, E. 1987. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy, p. 309–350. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  126. Needham, J. 1976. Science and Civilisation in China. Vol. 5, Part 3 Cambridge University Press, Cambridge, p. 27–63.

    Google Scholar 

  127. Newman, J. B. 1973. Iron Contamination in Soil Samples Ground in a Tema Mill. Notes on Soil Techniques Division of Soils, CSIRO, Melbourne, Australia, p. 4–6.

    Google Scholar 

  128. Nicholls, G. D. 1960. Techniques in sedimentary geochemistry: (2) Determination of the ferrous iron contents of carbonaceous shales. J. Sed. Pet. 30:603–612.

    CAS  Google Scholar 

  129. Norrish, K., and J. T. Hutton. 1969. An accurate X-ray spectrographs: method for the analysis of a wide range of geological samples. Geochim. Cosmochim. Acta 33:431–453.

    CAS  Google Scholar 

  130. Olsen, R. V., and R. Ellis, Jr. 1982. Iron. p. 301–312. In A. L. Page (ed.) Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Monograph No. 9. American Society of Agronomy, Madison.

    Google Scholar 

  131. O’Neil, R. L. 1959. Analytical procedures applicable to fine-grained sedimentary rocks. J. Sed. Pet. 29:267–280.

    Google Scholar 

  132. Paddick, M. E. 1948. A simple colorimetric test for available iron in alkaline soils. Soil Sci. Soc. Am. Proc. 13:197–199.

    Google Scholar 

  133. Petersen, R. E. 1952. Separation of radioactive iron from biological materials. Anal. Chem. 24:1850–1852.

    Google Scholar 

  134. Powlson, D. S. 1975. Effects of biocidal treatments on soil organisms, p. 193–224. In N. Walker (ed.) Soil Microbiology John Wiley and Sons, New York.

    Google Scholar 

  135. Price, F. R., and D. A. Jenkins. 1980. Removal of resin from standard soil thin-sections by low temperature ashing as a means of following transmitted optical by scanning electron microscopy. Clay Miner. 15:309–315.

    CAS  Google Scholar 

  136. Price, W. J., and P. J. Whiteside. 1977. General method for analysis of siliceous materials by atomic-absorption spectrophotometry and its application to macro- and micro- samples. Analyst 102:664–671.

    CAS  Google Scholar 

  137. Pruden, G., and C. Bloomfield. 1969. The effect of organic matter on the determination of iron(II) in soils and rocks. Analyst 94: 688–689.

    CAS  Google Scholar 

  138. Rains, T. C. 1975. Iron, cobalt and nickel, p. 126–246. In J. A. Dean and T. C. Rains (eds.) Flame Emission and Atomic Absorption Spectrometry. Vol. 3. Elements and Matrices Marcel Dekker, New York.

    Google Scholar 

  139. Riley, J. P. 1958. The rapid analysis of silicate rocks and minerals. Anal. Chim. Acta 19:413–428.

    CAS  Google Scholar 

  140. Riviere, J. C. 1983. Auger techniques in analytical chemistry. Analyst 108:649–684.

    CAS  Google Scholar 

  141. Salmon, L., and P. A. Cawse. 1983. Instrumental neutron activation analysis, p. 299–354. In K. A. Smith (ed.) Soil Analysis Marcel Dekker, New York.

    Google Scholar 

  142. Sandell, E. B. 1959. Colorimetric Determination of Traces of Metals Wiley-Interscience, New York.

    Google Scholar 

  143. Schilt, A. A. 1969. The Analytical Applications of 1,10-phenanthroline and Related Compounds Pergamon Press, New York.

    Google Scholar 

  144. Schimann, K., and D. G. W. Smith. 1980. The optical fusion of whole-rock powders and their analysis by an electron-microprobe technique. Can. Mineral. 18:131–142.

    CAS  Google Scholar 

  145. Schott, J., and R. A. Berner. 1983. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochim. Cosmochim. Acta 47:2233–2240.

    CAS  Google Scholar 

  146. Schulze, D. G. 1987. Separation and concentration of iron-containing phases, p. 63–80. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  147. Schuppli, P. A., G. J. Ross, and J. A. Meague. 1983. The effective removal of suspended materials from pyrophosphate extracts of soil from tropical and temperate regions. Soil Sci. Soc. Am. J. 47: 1026–1032.

    CAS  Google Scholar 

  148. Schwertmann, U. 1964. Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit säurer Ammoniumoxalat-Lösung. Z. Pflanzenernähr. Dung. Bodenk. 195:194–202.

    Google Scholar 

  149. Schwertmann, U. 1973. Use of oxalate for Fe extraction from soils. Can. J. Soil Sci. 53:244–246.

    CAS  Google Scholar 

  150. Searle, P. L., and B. K. Daly. 1977. The determination of aluminium, iron, manganese and silicon in acid oxalate soil extracts by flame emission and atomic absorption spectrometry. Geoderma 19:1–10.

    CAS  Google Scholar 

  151. Segalen, P. 1968. Note sur une méthode de détermination des products minéraux amorphes dans certains sols a hydroxydes tropicaux. Cah. Orstom Sér. Pédol. 6:105–126.

    CAS  Google Scholar 

  152. Selch, E. 1915. Die Aluminium-Bestimmung in Silikaten. Zeit. Anal. Chem 54:395–403.

    CAS  Google Scholar 

  153. Sequi, P., M. de Nobili, and G. Pardini. 1983. Aging of iron oxides during peroxidation. Agrochimica 27:158–163.

    CAS  Google Scholar 

  154. Shapiro, L. 1967. Rapid analysis of rocks and minerals by a single-solution method. U.S. Geol. Surv. Prof. Paper 575-B: 187–191.

    Google Scholar 

  155. Shell, H. R. 1954. Possible loss of iron during sodium carbonate fusion of silicates and rocks. Anal. Chem. 26:591–593.

    CAS  Google Scholar 

  156. Shimizu, N., and Hart, S. R. 1982. Applications of the ion microprobe to geochemistry and cosmo-chemistry. Ann. Rev. Earth Planetary Sci. Let. 10:483–526.

    CAS  Google Scholar 

  157. Smith, F. G., W. H. Murdy, and H. Diehl. 1952. The colorimetric determination of iron in raw and treated municipal water supplies by use of 4,7-diphenyl-l,10-phenanthroline. Analyst 77:418–422.

    CAS  Google Scholar 

  158. Soil Survey Staff. 1972. Soil Laboratory Methods and Procedures for Collecting Soil Survey Samples. Soil Survey Investigations Report No 1 U.S. Department of Agriculture, Washington, D. C.

    Google Scholar 

  159. Soltanpur, P. N., and A. P. Schwab. 1977. A new test for simultaneous extraction of macro- and micro- nutrients in alkaline soils. Comm. Soil Plant Anal. 8:195–207.

    Google Scholar 

  160. Soltanpur, P. N., and S. Workman. 1979. Modification of the NH4 HCO3 -DTPA test to omit carbon black. Comm. Soil Plant Anal. 10:1411–1420.

    Google Scholar 

  161. Stucki, J. W. 1981. The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: II. A photochemical method. Soil Sci. Soc. Am. J 45:638–641.

    CAS  Google Scholar 

  162. Stucki, J. W., and W. L. Anderson. 1981. The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline: I. Sources of Variability. Soil Sci. Soc. Am. J. 45:633–637

    CAS  Google Scholar 

  163. Stucki, J. W., and C. B. Roth. 1977. Oxidation-reduction mechanism for structural iron in nontronite. Soil Sci. Soc. Am. Proc. 41:808–814.

    CAS  Google Scholar 

  164. Stucki, J. W., C. B. Roth, and W. E. Baitinger. 1976. Analysis of iron bearing clay minerals by electron spectroscopy for chemical analysis (ESCA). Clays Clay Miner. 24:289–292.

    CAS  Google Scholar 

  165. Stupar, J., and R. Ajlec. 1982. Study of the use of soil suspensions in the determination of iron, manganese, magnesium and copper in soils by flame atomic-absorption spectrometry. Analyst 107:144–156.

    CAS  Google Scholar 

  166. Szydlowski, F. J., D. L. Dunmire, E. E. Peck, R. L. Eggers, and W. R. Matson. 1981. Simultaneous determination of iron(II), iron(III) and total iron in sphagnum moss peat by programmable voltammetry on a graphite tubular electrode. Anal. Chem. 53:193–196.

    CAS  Google Scholar 

  167. Tabatabai, M. A., and J. M. Bremner. 1970. An alkaline oxidation method for the determination of total sulphur in soils. Soil Sci. Soc. Am. Proc 34:62–65.

    CAS  Google Scholar 

  168. Tamm, O. 1922. Eine methode zur bestimunung der anorganischen komponente des geikomplexes im boden. Medd. Stat. Skogsforsoks. Stockholm 19:387–404.

    CAS  Google Scholar 

  169. Tamm, O. 1932. Über die oxalat-methode in der chemische boden-analyse. Medd. Stat. Skogsforsoks. Stockholm 27:1–20.

    Google Scholar 

  170. Tertian, R., and F. Claisse. 1982. Principles of Quantitative X-Ray Fluorescence Analysis Wiley, New York.

    Google Scholar 

  171. Thomas, L. C., and G. J. Chamberlain. 1980. Colorimetrie Chemical Analysis Methods, Ninth Edition Wiley-Interscience, New York.

    Google Scholar 

  172. Thomas, R. A., and J. R. Hollahan. 1974. Use of chemically-reactive gas plasmas in preparing specimens for scanning electron microscopy and electron probe micro-analysis, p. 83–92. In O. Johari and I. Corvin (eds.) Scanning Electron Microscopy, Part I IIT Research Institute, Chicago.

    Google Scholar 

  173. Thomas, P., and J. A. Varley. 1982. Soil survey of tidal sulphidic soils in the tropics: a case study, p. 52–72. In H. Dost and N. van Breemen (eds.) Proceedings of the Bangkok Symposium on Acid Sulphate Soils. International Institute for Land Reclamation and Improvement, Vol. 31 ILLRI, Wageningen.

    Google Scholar 

  174. Thompson, M., and J. M. Walsh. 1983. A Handbook of Inductively Coupled Plasma Spectrometry Blackie, London.

    Google Scholar 

  175. Ure, A. M. 1983. Atomic absorption and flame emission spectrometry. p. 1–54. In K. A. Smith (ed.) Soil Analysis Marcel Dekker, New York.

    Google Scholar 

  176. Ure, A. M., and J. R. Bacon. 1978. Comprehensive analysis of soils and rocks by spark-source mass spectrometry. Analyst 103:807–822.

    CAS  Google Scholar 

  177. Van Loon, J. C., and C. M. Parissis. 1969. Scheme of silicate analysis based on the lithium metaborate fusion followed by atomic-absorption spectrophotometry. Analyst 94:1057–1062.

    Google Scholar 

  178. Viets, F. J., Jr., and W. L. Lindsay. 1980. Testing soils for zinc, copper, manganese and iron. p. 153–173. In L. M. Walsh and J. D. Beaton (eds.) Soil Testing and Plant Analysis Soil Science Society of America, Madison.

    Google Scholar 

  179. Viljoen, E. A., and J. A. Johnson. 1983. Microbeam techniques in applied mineralogy. Spec. Publ. Geol. Soc. S. Afr. 7:499–506.

    Google Scholar 

  180. Waite, T. D., and F. M. M. Morel. 1984. Photoreductive dissolution of colloidal iron oxide: effect of citrate. J. Colloid Interface Sci. 102:121–137.

    CAS  Google Scholar 

  181. Walsh, J. N., and R. A. Howie. 1980. An evaluation of the performance of an inductively coupled plasma source spectrometer for the determination of the major and trace constituents of silicate rocks and minerals. Mineral. Mag. 43:967–974.

    CAS  Google Scholar 

  182. Waters, D., and I. C. Sweetman. 1955. The Rukuhia soil grinder. Soil Sci. 79:411–413.

    Google Scholar 

  183. Watt, F., G. W. Grime, G. D. Blower, J. Takacs, and D. J. T. Vaux. 1982. The Oxford 1-µm proton microprobe. Nucl. Instrum. Methods Phys. Res. 197:65–77.

    CAS  Google Scholar 

  184. Webster, R. 1977. Quantitative and Numerical Methods in Soil Classification. Oxford University Press, Oxford.

    Google Scholar 

  185. Wieser, P., R. Wurster, and H. Seiler. 1984. Laser microprobe mass analysis detection limits and lateral resolution. J. Phys. Colloq. C2: 261–264.

    Google Scholar 

  186. Wilkins, C. 1983. X-ray fluorescence analysis, p. 195–228. In K. A. Smith (ed.) Soil Analysis Marcel Dekker, New York.

    Google Scholar 

  187. Wise, W. S., and R. W. Tschernich. 1976. Chemical composition of ferrierite. Am. Mineral. 61:60–66.

    CAS  Google Scholar 

  188. Yamagishi, A., K. Tanaki, and I. Toyoshima. 1982. Auger electron spectroscopic evidence for the racemic adsorption of tris(l,10-phenanthroline)iron(II) on sodium montmorillonite. J. Chem. Soc. Chem. Commun. 6:343–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Loveland, P.J. (1988). The Assay for Iron in Soils and Clay Minerals. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics