Skip to main content

Long-Term Chemical, Mineralogical, and Morphological Effects of Iron-Redox Processes in Periodically Flooded Soils

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The short-term processes of reduction of Fe(III) oxides to dissolved, adsorbed, and solid Fe(II), discussed previously (van Breemen, 1987), often have important consequences over decades, centuries, or millennia. This Chapter deals with a number of long-term consequences of Fe redox processes. First, the process of ferrolysis, hypothesized by Brinkman (1970), will be discussed to explain a number of properties of seasonally flooded soils. Ferrolysis is a cyclic process in seasonally waterlogged soils that starts with displacement of adsorbed cations by Fe(II). Under suitable hydrologic conditions, the displaced cations may be lost by leaching. The resulting soil acidification often affects the clay mineralogical composition and the morphology of the surface soil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. de Barros Machado, A. 1983. The contribution of termites to the formation of laterites. p. 261–270. In A. J. Melfi and A. Carvalho (eds.) Laterization Processes, Proc. 11th Int. Seminar Laterization Processes. University of São Paulo, Brazil.

    Google Scholar 

  2. Blume, H. P. 1987. The fate of Fe during soil formation in humid-temperate environments, p. 749–777. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  3. Breemen, N. van. 1975. Acidification and deacidification of coastal plain soils as a result of periodic flooding. Soil Sci. Soc. Am. Proc. 39:1153–1157.

    Article  Google Scholar 

  4. Breemen, N. van. 1976. Genesis and solution chemistry of acid sulfate soils in Thailand. Agricultural Research Report 848. PUDOC, Wageningen.

    Google Scholar 

  5. Breemen, N. van. 1987. Effects of seasonal redox processes involving iron on the chemistry of periodically reduced soils, p. 797–809. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  6. Breemen, N. van. 1987. Effects of redox processes on soil acidity. Neth. J. Agric. Sci. (in press).

    Google Scholar 

  7. Brinkman, R. 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma 3:199–206.

    Article  CAS  Google Scholar 

  8. Brinkman, R., A. G. Jongmans, R. Miedema, and P. Maaskant. 1973. Clay decomposition in seasonally wet, acid soils: micromorphological, chemical and mineralogical evidence from individual argillans. Geoderma 10:259–257.

    Article  CAS  Google Scholar 

  9. Brinkman, R. 1977a. Surface-water gley soils in Bangladesh: genesis. Geoderma 17:111–144.

    Article  CAS  Google Scholar 

  10. Brinkman, R. 1977b. Problem hydromorphic soils in north-east Thailand. 2. Physical and chemical aspects, mineralogy and genesis. Neth. J. Agric. Sci. 25:170–181.

    CAS  Google Scholar 

  11. Brinkman, R. 1979. Ferrolysis, a soil-forming process in hydromorphic conditions. Agricultural Research Reports 887. PUDOC, Wageningen.

    Google Scholar 

  12. Brinkman, R., A. G. Jongmans, and R. Miedema. 1977. Problem hydromorphic soils in north-east Thailand. 1. Environment and soil morphology. Neth. J. Agric. Sci. 25:108–125.

    Google Scholar 

  13. Campbell, A. S., and U. Schwertmann. 1984. Iron oxide mineralogy of placic horizons. J. Soil Sci. 35:569–582.

    Article  CAS  Google Scholar 

  14. Collins, J. F., and S. W. Buol. 1970. Patterns of iron and manganese precipitation under specified Eh-conditions. Soil Sci. 110:157–162.

    Article  CAS  Google Scholar 

  15. Crompton, E. 1952. Some morphological features associated with poor soil drainage. J. Soil Sci. 3:277–289.

    Article  Google Scholar 

  16. de Gee, J. C. 1950. Preliminary oxidation potential determinations in a “sawah” profile near Bogor (Java). Trans. 4th Int. Congr. Soil Sci. 1:300–302.

    Google Scholar 

  17. Eaqub, M., and H. P. Blume. 1982. Genesis of a so-called ferrolysed soil of Bangladesh. Z. Pflanzenernähr. Bodenk. 145:470–482.

    Article  CAS  Google Scholar 

  18. Eeckman, J. P., and H. Laudelout. 1961. Chemical stability of hydrogen-montmorillonite suspensions. Kolloid Z. 178:99–107.

    Article  CAS  Google Scholar 

  19. Espiau, P., and G. Pedro. 1983. Etude du phenomene de ferrolyse par voie experimentale, production d’acidite d’echange et mise en evidence du role catalytique des mineraux argileux. Sci. Sol 1983:173–184.

    Google Scholar 

  20. Green, M. S., and J. R. Etherington. 1977. Oxidation of ferrous iron by rice (Oriza sativa L.) roots: a mechanism for waterlogging tolerance? J. Exp. Bot. 28:678–690.

    Article  CAS  Google Scholar 

  21. Harmsen, K., and N. van Breemen. 1975a. A model for the simultaneous production and diffusion of ferrous iron in submerged soils. Soil Sci. Soc. Am. Proc. 39:1063–1068.

    Article  CAS  Google Scholar 

  22. Harmsen, K., and N. van Breemen. 1975b. Translocation of iron in acid sulfate soils. II. Production and diffusion of dissolved ferrous iron. Soil Sci. Soc. Am. Proc. 39:1148–1153.

    Article  CAS  Google Scholar 

  23. Howeler, R. W., and D. R. Bouldin. 1971. The diffusion and consumption of oxygen in submerged soils. Soil Sci. Soc. Am. Proc. 35:202–208.

    Article  CAS  Google Scholar 

  24. Karim, Z. 1984. Formation of aluminum-substituted goethite in seasonally waterlogged rice soils. Soil Sci. Soc. Am. J. 48:410–413.

    Article  CAS  Google Scholar 

  25. Kawaguchi, K., and Y. Matsuo. 1957. Reinvestigation of active and inactive oxides along soil profiles in time series of dry rice fields in polder lands of Kojima basin, Okayama prefecture, Japan. Soil Plant Food 3:29–35.

    CAS  Google Scholar 

  26. Kawaguchi, K., and K. Kyuma. 1969. Lowland Rice Soils in Thailand. Center for Southeast Asian Studies, Kyoto University, Japan.

    Google Scholar 

  27. Koenigs, F. F. R. 1950. A “sawah” profile near Bogor (Java). Trans. 4th Int. Congr. Soil Sci. 1:297–300.

    Google Scholar 

  28. Moormann, F. R., and N. van Breemen. 1978. Rice: Soil, Water, Land. International Rice Research Institute, Manila, Philippines.

    Google Scholar 

  29. Okazaka, M., and H. Wada. 1976. Some aspects of pedogenic processes in paddy soils. Pedologist (Jap.) 20:139–150.

    Google Scholar 

  30. van Oosten, M. F., S. Slager, and A. G. Jongmans. 1974. The morphology and genesis of pseudogley phenomena in a Pleistocene loamy sand in the Netherlands. Neth. J. Agric. Sci. 22:22–30.

    Google Scholar 

  31. Patrick, W. H., Jr., and R. D. Delaune. 1972. Characterization of the oxidized and reduced zones in flooded soils. Soil. Sci. Soc. Am. Proc. 36:573–576.

    Article  CAS  Google Scholar 

  32. Schlichting, E. 1973. Pseudogleye und Gleye-Genese und Nutzung hydromorpher Boden. p. 1–6. In E. Schlichting and U. Schwertmann (eds.) Pseudogley and Gley. Trans. Comm. V and VI, Int. Soc. Soil Sci. Verlag Chemie, Weinheim, FRG.

    Google Scholar 

  33. Schwertmann, U., and R. W. Fitzpatrick. 1977. Occurrence of lepidocrocite and its association with goethite in Natal soils. Soil Sci. Soc. Am. J. 41:1013–1018.

    Article  CAS  Google Scholar 

  34. Schwertmann, U., and R. M. Taylor. 1977. Iron oxides, p. 145–180. In J. B. Dixon and S. B. Weed (eds.) Minerals in Soil Environments. Soil Science Society of America, Madison.

    Google Scholar 

  35. Taylor, R. M., and U. Schwertmann. 1974. Maghemite in soils and its origin. [Parts I and II]. Clay Miner. 10:289–310.

    Article  CAS  Google Scholar 

  36. Taylor, R. M., and U. Schwertmann. 1978. The influence of aluminum on iron oxides. I. The influence of A1 on Fe oxide formation from the Fe(II) system. Clays Clay Miner. 26:373–383.

    Article  CAS  Google Scholar 

  37. USDA Soil Survey Staff. 1975. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. USDA Handbook 436. USDA, Washington, D. C.

    Google Scholar 

  38. Wada, H., and S. Matsumoto. 1973. Pedogenic processes in paddy soils. Pedologist (Jap.) 17:2–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

van Breemen, N. (1988). Long-Term Chemical, Mineralogical, and Morphological Effects of Iron-Redox Processes in Periodically Flooded Soils. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics