Skip to main content

Chemistry of Iron in Calcareous Systems

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

The reactions of Fe with carbonate are of interest for two main reasons: (1) they represent important geologic and pedogenic processes which influence the transport of Fe(aq) and the deposition and occurrence of Fe oxides, carbonates, and sulfides, and (2) iron is a limiting nutrient for crop production on much of the 25–30% of the world land area which is calcareous. Iron deficiency is the most prevalent and the most difficult to control of the plant nutritional problems encountered on calcareous soils. In spite of the importance of Fe/carbonate reactions to the geological, biological, and agricultural sciences, there has been little published literature on the chemistry of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bloom, P. R. 1981. Metal organic interactions in soil. p. 129–150. In R. H. Dowdy, J. A. Ryan, V. V. Volk, and D. E. Baker (eds.) Chemistry in the Soil Environment. Special Publication 40. American Society of Agronomy, Madison.

    Google Scholar 

  2. Borggaard, O. K. 1982. Selective extraction of amorphous iron oxides by EDTA from selected silicates and mixtures of amorphous and crystalline iron oxides. Clay Miner. 17: 365–368.

    Article  CAS  Google Scholar 

  3. Borggaard, O. K. 1987. Phase identification by selective dissolution techniques, p. 82–98. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  4. Brown, G. 1953. The occurrence of lepidocrocite in British soils. J. Soil Sci. 4:220–228.

    Article  CAS  Google Scholar 

  5. Brown, J. C. 1978. Mechanisms of iron uptake by plants. Plant Cell Environ. 1 :249–257.

    Article  Google Scholar 

  6. Burton, W. K., N. Cabrera, and F. Frank. 1951. The growth of crystals and the equilibrium structure of their surfaces. Roy. Soc. London Phil. Tran. A-243 :299–358.

    Article  Google Scholar 

  7. Carlson, L., and U. Schwertmann. 1981. Natural ferrihydrites in surface deposits from Finland and their association with silica. Geochim. Cosmochim. Acta 45:421–429.

    Article  CAS  Google Scholar 

  8. Carstea, D. D., M. E. Harward, and E. G. Knox. 1970. Comparison of iron and aluminum hydroxy interlayers in montmorillonite and vermiculite. Soil Sci. Soc. Am. J. 34 :517–526.

    Article  CAS  Google Scholar 

  9. Chaney, R. L. 1984. Diagnostic practices to identify iron deficiency in higher plants. J. Plant Nutr. 7 :47–67.

    Article  CAS  Google Scholar 

  10. Chaney, R. L., J. C. Brown, and L. O. Tiffin. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50:208–213.

    Article  CAS  Google Scholar 

  11. Chen, C. C., J. B. Dixon, and F, T. Turner. 1980. Iron coatings on rice roots: mineralogy and quantity influencing factors. Soil Sci. Soc. Am. J. 44:635–639.

    Article  CAS  Google Scholar 

  12. Chen, Y., and P. Barak. 1982. Iron nutrition in calcareous soils. Adv. Agron. 35 :217–240.

    Article  CAS  Google Scholar 

  13. Clarke, E. T., R. H. Loeppert, and J. M. Ehrman. 1985. Crystallization of iron oxides on static surfaces in static systems. Clays Clay Miner. 33:152–158.

    Article  CAS  Google Scholar 

  14. Fischer, W. R. 1987. Microbiological reactions of Fe in soils, p. 715–748. In Joseph W. Stucki, Bernard A. Goodman and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  15. Fischer, W. R., and T. Pfanneberg. 1984. An improved method for testing the rate of iron(III) oxide reduction by bacteria. Zbl. Mikrobiol. 139 :163–166.

    CAS  Google Scholar 

  16. Fitzpatrick, R. W. 1987. The occurrence and pedogenic significance of iron compounds in soils of the southern hemisphere, p. 351–396. In Joseph W. Stucki, Bernard A. Goodman and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  17. Fordham, A. W. 1970. Sorption and precipitation of iron on kaolinite. Aust. J. Soil Res. 8 :107–122.

    Article  CAS  Google Scholar 

  18. Geiger, S. C., and R. H. Loeppert. 1986. Correlation of DTPA extractable Fe with indigenous properties of selected calcareous soils. J. Plant Nutr. 9 :229–240.

    Article  CAS  Google Scholar 

  19. Goodman, B. A. 1987. The characterization of Fe complexes with soil organic matter, p. 677–687. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  20. Goodman, B. A., and M. V. Cheshire. 1979. A Mössbauer spectroscopic study of the effect of pH on the reaction between iron and humic acid in aqueous media. J. Soil Sci. 30 :85–91.

    Article  CAS  Google Scholar 

  21. Hagstrom, G. R. 1984. Current management practices for correcting iron deficiency in plants with emphasis on soil management. J. Plant Nutr. 7 :23–46.

    Article  CAS  Google Scholar 

  22. Jauregui, M. A., and H. M. Reisenauer. 1982. Calcium carbonate and manganese dioxide as regulators of available manganese and iron. Soil Sci. 134 :105–110.

    Article  CAS  Google Scholar 

  23. Karim, Z. 1984. Characteristics of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica. Clays Clay Miner. 12 :181–184.

    Article  Google Scholar 

  24. Landsberg, E. 1981. Organic acid synthesis and release of hydrogen ions in response to Fe deficiency stress of mono- and dicotyledonous plant species. J. Plant Nutr. 3 :579–591.

    Article  CAS  Google Scholar 

  25. Lindsay, W. L. 1979. Chemical Equilibria of Soils. John Wiley and Sons, New York.

    Google Scholar 

  26. Lindsay, W. L. 1987. Solubility and redox equilibria of Fe compounds in soils, p. 38–62 In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  27. sLindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42 :421–428.

    Article  Google Scholar 

  28. Lindsay, W. L., and A. P. Schwab. 1982. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821–840.

    Article  CAS  Google Scholar 

  29. Loeppert, R. H. 1986. Chemistry and interactions of Fe with soil carbonate. J. Plant Nutr. 9 :195–214.

    Article  CAS  Google Scholar 

  30. Loeppert, R. H., and E. T. Clarke. 1984. Reactions of Fe(II) and Fe(III) in calcareous soils. J. Plant Nutr. 7 :149–163.

    Article  CAS  Google Scholar 

  31. Loeppert, R. H., and C. T. Hallmark. 1985. Indigenous soil properties influencing the availability of Fe in calcareous soils. Soil Sci. Soc. Am. J. 49 :597–603.

    Article  CAS  Google Scholar 

  32. Loeppert, R. H., and L. R. Hossner. 1984. Reactions of Fe(II) and Fe(III) with calcite. Clays Clay Miner. 32:213–222.

    Article  CAS  Google Scholar 

  33. Loeppert, R. H., and L. R. Hossner. 1987. Influence of pH, CO2 and O2 on reaction of Fe and Fe with calcite. Soil Sci. Soc. Am. J. (in Press).

    Google Scholar 

  34. Loeppert, R. H., L. R. Hossner, and P. K. Amin. 1984. Formation of ferric oxyhydroxides from ferrous and ferric perchlorate in stirred calcareous systems. Soil Sci. Soc. Am. J. 48:677–683.

    Article  CAS  Google Scholar 

  35. Moore, T. J. 1986. Soil properties affecting corrosion and cathodic protection of steel in Texas soils. Ph.D. Dissertation, Texas A & M University.

    Google Scholar 

  36. McKeague, J. A., and J. H. Day. 1965. Dithionite and oxalate extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13–22.

    Article  Google Scholar 

  37. Norvell, W. A., and W. L. Lindsay. 1982. Effect of ferric chloride additions on the solubility of ferric iron in a near-neutral soil. J. Plant Nutr. 5:1285–1295.

    Article  CAS  Google Scholar 

  38. Norvell, W. A., and W. L. Lindsay. 1982. Estimation of the concentration of Fe3+ and the (Fe3+(OH)3 ion activity product from equilibria of EDTA in soil. Soil Sci. Soc. Am. J. 46:710–715.

    Article  CAS  Google Scholar 

  39. Olsen, R. A., J. H. Bennett, D. Blume, and J. C. Brown. 1981. Chemical aspects of the Fe stress response mechanism in tomatoes. J. Plant Nutr. 3:905–921.

    Article  CAS  Google Scholar 

  40. Pawluk, S. 1972. Measurement of crystalline and amorphous iron removal in soils. Can. J. Soil Sci. 52:119–123.

    Article  CAS  Google Scholar 

  41. Picard, G. L., and G. T. Felback. 1976. The complexation of iron by marine humic acid. Geochim. Cosmochim. Acta 40:1347–1350.

    Article  CAS  Google Scholar 

  42. Romheld, V., and H. Marschner. 1983. Mechanism of iron uptake by peanut plants. I. Fe(III) reduction, chelate splitting, and release of phenolics. Plant Physiol. 7:949–954.

    Article  Google Scholar 

  43. Romheld, V., C. Muller, and H. Marschner. 1984. Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol. 76:603–603.

    Article  CAS  Google Scholar 

  44. Ross, G. J., and C. Wang. 1982. Lepidocrocite in a calcareous, well-drained soil. Clays Clay Miner. 30:394–396.

    Article  CAS  Google Scholar 

  45. Schnitzer, M., and S. U. Khan. 1972. Humic Substances in the Environment. Marcel Dekker, New York.

    Google Scholar 

  46. Schwertmann, U. 1987. Some properties of soil and synthetic iron oxides, p. 203–250. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  47. Schwertmann, U., and R. W. Fitzpatrick. 1977. Occurrence of lepidocrocite and its association with goethite in Natal soils. Soil Sci Soc. Am. J. 41:1013–1018.

    Article  CAS  Google Scholar 

  48. Schwertmann, U., and R. M. Taylor. 1977. Iron oxides, p. 145–180. In J. B. Dixon and S. B. Weed (eds.) Minerals in Soil Environments. Soil Science Society of America, Madison.

    Google Scholar 

  49. Schwertmann, U., and R. M. Taylor. 1979. Natural and synthetic poorly crystallized lepidocrocite. Clay Miner. 14:285–293.

    Article  CAS  Google Scholar 

  50. Schwertmann, U., and H. Thalmann. 1976. The influence of Fe(II), Si and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions. Clay Miner. 11:189–200.

    Article  CAS  Google Scholar 

  51. Senkayi, A. L., J. B. Dixon, and L. R. Hossner. 1986. Todorokite, Goethite and hematite: alteration products of siderite in East Texas lignite overburden. Soil Sci. 142:36–42.

    Article  CAS  Google Scholar 

  52. Sidhu, P. S., R. J. Gilkes, R. M. Cornell, A. M. Posner, and J. P. Quirk. 1981. Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clays Clay Miner. 29:269–276.

    Article  CAS  Google Scholar 

  53. Stucki, J. W. 1987. Structural iron in smectites, p. 625–675. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  54. Sugiura, Y., and K. Nomoto. 1984. Phytosiderophores: Structures and properties of mugineic acids and their metal complexes. Structure Bonding 58:107–135.

    Article  CAS  Google Scholar 

  55. Szilagyi, M. 1971. Reduction of Fe3+ ion by humic acid preparations. Soil Sci. 111:233–235.

    Article  CAS  Google Scholar 

  56. Takagi, S. 1976. Naturally occurring iron-chelate compounds in oat and rice-root washings. Soil Sci. Plant Nutr. 22:423–433.

    CAS  Google Scholar 

  57. Takagi, S., K. Nomoto, and T. Takemoto. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7:469–477.

    Article  CAS  Google Scholar 

  58. Vempati, R. K., and R. H. Loeppert. 1986. Synthetic ferrihydrite as a potential Fe amendment in calcareous soil. J. Plant Nutr. 9:1039–1052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Loeppert, R.H. (1988). Chemistry of Iron in Calcareous Systems. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics