Skip to main content

Structural Iron in Smectites

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

In the words of Ross and Hendricks (1945), “Clay minerals . . . are the dominant materials of shales and surficial rocks and so are among the most important structural materials of the earth’s surface.” Clay minerals play a significant role in many aspects of life, ranging from their domination of the properties of the soils and sediments beneath us to their ubiquitous commercial use in many products and industries (Newman, 1984; Odom, 1984; Jepson, 1984, 1987). Iron in the crystal structures of these layer silicates significantly affects their physical and chemical properties, and thus is of great importance in the world around us.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Addison, W. E., and J. H. Sharp. 1963. Redox behavior of iron in hydroxylated silicates. Clays Clay Miner. 11:95–104.

    Google Scholar 

  2. Allen, G. C., and N. S. Hush. 1967. Intervalence transfer absorption. Part 1. Qualitative evidence for intervalence transfer absorption in inorganic systems in solution and in the solid state. Prog. Inorg. Chem. 8:357–389.

    CAS  Google Scholar 

  3. Anderson, W. L., and J. W. Stucki. 1978. Effect of structural Fe2+ on visible absorption spectra of nontronite suspensions, p. 75–83. In M. M. Mortland and V. C. Farmer (eds.) Proc. Int. Clay Conf., Oxford, 1978. Elsevier, Amsterdam.

    Google Scholar 

  4. Aronowitz, S., L. Coyne, J. Lawless, and J. Rishpon. 1982. Quantum-chemical modeling of smectite clays. Inorg. Chem. 21:2589–2593.

    Google Scholar 

  5. Badaut, D., G. Besson, A. Decarreau, and M. Rautureau. 1985. Occurrence of a ferrous, trioctahedral smectfte in Recent sediments of Atlantis II Deep, Red Sea. Clay Miner. 20:389–404.

    CAS  Google Scholar 

  6. Bahranowski, K., S. Dubiel, and L. Stoch. 1981. Iron in the structure of some clay minerals and its extraction with 15% sulfuric acid in the light of Moessbauer spectroscopy. Mineral. Pol. 12:3–14.

    CAS  Google Scholar 

  7. Bailey, S. W. 1980a. Summary of recommendations of AIPEA Nomenclature Committee. Clays Clay Miner. 28:73–78.

    CAS  Google Scholar 

  8. Bailey, S. W. 1980b. Structures of layer silicates, p. 1–123. In G. W. Brindley and G. Brown (eds.) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph No. 5. The Mineralogical Society, London.

    Google Scholar 

  9. Bailey, S. W. 1986. Report of AIPEA Nomenclature Committee. Supplement to AIPEA Newsletter No. 22, February, 1986.

    Google Scholar 

  10. Ballet, O., and J. M. D. Coey. 1982. Magnetic properties of sheet silicates; 2:1 layer minerals. Phys. Chem. Miner. 8:218–229.

    CAS  Google Scholar 

  11. Ballet, O., J. M. D. Coey, P. Mangin, and M. G. Townsend. 1985. Ferrous talc — a planar antiferromagnet. Solid State Comm. 55:787–790.

    CAS  Google Scholar 

  12. Banin, A., and N. Lahav. 1968. Particle size and optical properties of montmorillonite in suspension. Isr. J. Chem. 6:235–250.

    CAS  Google Scholar 

  13. Banks, H. H. 1972. Iron-rich saponite: Additional data on samples dredged from the mid-atlantic ridge, 22 deg. N. lattitude. Smithson. Contrib. Earth Science 9:39–42.

    Google Scholar 

  14. Barclay, L. M., and R. H. Ottewill. 1970. The measurement of forces between colloidal particles. Spec. Discuss. Faraday Soc. 1:138–147.

    CAS  Google Scholar 

  15. Bart, J. C., N. Burriesci, F. Cariati, G. Micera, and C. Gessa. 1980. Spectroscopic investigations of iron distribution in some bentonites from Sardinia. Clays Clay Miner. 28:233–236.

    CAS  Google Scholar 

  16. Besson, G., C. de la Calle, M. Rautureau, C. Tchoubat, S. I. Tsipurski, and V. A. Dritz. 1982. X-ray and electron diffraction study of the structure of the Garfield nontronite. p. 29–40. In H. van Olphen and F. Veniale (eds.) Proc. Int. Clay Conf., Bologna and Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  17. Besson, G., A. S. Booking, L. G. Dainyak, M. Rautureau, S. I. Tsipursky, C. Tchoubar, and V. A. Drits. 1983. Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronites. J. Appl. Cryst. 16:374–383.

    CAS  Google Scholar 

  18. Bischoff, J. L. 1972. A ferroan nontronite from the Red Sea geothermal system. Clays Clay Miner. 20:217–223.

    CAS  Google Scholar 

  19. Bolt, G. H., and R. D. Miller. 1955. Compression studies of illite suspensions. Soil Sci. Soc. Am. Proc. 19:285–288.

    CAS  Google Scholar 

  20. Bonnin, D., G. Calas, H. Suquet, and H. Pezerat. 1985. Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys. Chem. Miner. 12:55–64.

    CAS  Google Scholar 

  21. Borggaard, O. K. 1987. Phase identification by selective dissolution techniques, p. 82–98. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht.

    Google Scholar 

  22. Borggaard, O. K., H. B. Lindgreen, and S. Mørup. 1982. Oxidation and reduction of structural iron in chlorite at 480 degree Celsius. Clays Clay Miner. 30:353–363.

    CAS  Google Scholar 

  23. Bosio, N. J., V. J. Hurst, and R. L. Smith. 1975. Nickeliferous nontronite, A 15Å garnierite, at Niquelândia, Goiás, Brazil. Clays Clay Miner. 23:400–403.

    CAS  Google Scholar 

  24. Bradley, W. F. 1940. Structure of attapulgite. Am. Mineral. 25:405–410.

    CAS  Google Scholar 

  25. Breemen, N. van. 1980. Magnesium-ferric iron replacement in smectite during, aeration of pyritic sediments. Clay Miner. 15:101–110.

    Google Scholar 

  26. Breemen, N. van. 1987. Redox processes of iron and sulfur involved in the formation of acid sulfate soils, p. 825–841. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  27. Brigatti, M. F. 1982. Hisingerite: a review of its crystal chemistry, p. 97–110. In H. van Olphen and F. Veniale (eds.) Proc. Int. Clay Conf., Bologna and Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  28. Brigatti, M. F. 1983. Relationships between composition and structure in Fe-rich smectites. Clay Miner. 18:177–186.

    CAS  Google Scholar 

  29. Brindley, G. W. 1980. Order-disorder in clay mineral structures, p. 125–195. In G. W. Brindley and G. Brown (eds.) Crystal Structures of Clay Minerals and their X-ray Identification. Monograph No. 5. Mineralogical Society, London.

    Google Scholar 

  30. Brindley, G. W., and G. Brown. 1980. Crystal Structures of Clay Minerals and their X-ray Identification. Monograph No. 5. Mineralogical Society, London.

    Google Scholar 

  31. Brindley, G. W., and D. M. C. MacEwan. 1953. Structural aspects of the mineralogy of clays and related silicates, p. 15–59. In Ceramics: A Symposium. The British Ceramic Society, London.

    Google Scholar 

  32. Brindley, G. W., and J. V. De Souza. 1975. Nickel-containing montmorillonites and chlorites from Bazil, with remarks on schuchardite. Mineral. Mag. 40:141–152.

    CAS  Google Scholar 

  33. Brindley, G. W., D. L. Bish, and H.-M. Wan. 1979. Compositions, structures, and properties of nickel-containing minerals in the kerolite-pimelite series. Am. Mineral. 64:615–625.

    CAS  Google Scholar 

  34. Buckley, H. A., J. C. Bevan, K. M. Brown, L. R. Johnson, and V. C. Farmer. 1978. Glauconite and celadonite: two separate mineral species. Mineral. Mag. 42:373–382.

    CAS  Google Scholar 

  35. Burns, R. G., D. A. Nolet, K. M. Parkin, C. A. Mammon, and K. B. Schwartz. 1980. Mixed-valence minerals of iron and titanium: correlations of structural, Mössbauer and electronic spectral data. p. 295–336. In D. B. Brown, (ed.) Mixed-Valence Compounds, Theory and Applications in Chemistry, Physics, Geology and Biology. D. Reidel, Dordrecht.

    Google Scholar 

  36. Burst, J. F. 1958. Mineral heterogeneity in glauconite pellets. Am. Mineral. 45:481–489.

    Google Scholar 

  37. Caillere, S., S. Henin, and J. Esquevin. 1953. Syntheses a basse temperature de phyllites ferriferes. C. R. Acad. Sci. Paris 239:1535–1537.

    Google Scholar 

  38. Caillere, S., S. Henin, and J. Esquevin. 1955. Syntheses a basse temperature de quelques minéraux ferriferes (silicates et oxydes). Bull. Soc. Fr. Miner. Cryst. 79:408–421.

    Google Scholar 

  39. Cardile, C. M., and J. H. Johnston. 1985. Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy. Clays Clay Miner. 33:295–300.

    CAS  Google Scholar 

  40. Chen, S. Z., P. F. Low, and C. B. Roth. 1987. Relation between potassium fixation and the oxidation state of octahedral iron. Soil Sci. Soc. Am. J. 51:82–86.

    CAS  Google Scholar 

  41. Chen, Y., D. Shaked, and A. Banin. 1979. The role of structural iron(III) in the UV absorption by smectites. Clay Miner. 14:93–102.

    CAS  Google Scholar 

  42. Chukhrov, F. V., B. B. Zvyagin, V. A. Drits, A. I. Gorshkov, L. P. Ermilova, E. A. Goilo, and E. S. Rudnitskaya. 1979. The ferric analog of pyrophyllite and related phases, p. 55–64. In M. M. Mortland and V. C. Farmer (eds.)Proc. Int. Clay Conf., Oxford, 1978. Elsevier, Amsterdam.

    Google Scholar 

  43. Coey, J. M. D. 1984. Mössbauer spectroscopy of silicate minerals, p. 443–509. In Gary J. Long (ed.) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Plenum Press, New York.

    Google Scholar 

  44. Coey, J. M. D. 1987. Magnetic properties of iron in soil iron oxides and clay minerals, p. 397–466. In Joseph W. Stucki, Bernard. A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  45. Coey, J. M. D., F. V. Chukhrov, and B. B. Zvyagin. 1984. Cation distribution, Mössbauer spectra, and magnetic properties of ferri-pyrophyllite. Clays Clay Miner. 32:198–204.

    CAS  Google Scholar 

  46. Colin, F., Y. Noack, J. J. Trescases, and D. Nahon. 1985. L’alteration lateritique debutante des pyroxenites de jacuba, Niquelandia, Bresil. Clay Miner. 20:93–113.

    CAS  Google Scholar 

  47. Craciun, C. 1984. Influence of the Fe(+3)-for-Al(+3) octahedral substitutions on the IR Spectra of montmoriilonite minerals. Spectroscopy Letters 17:579–590.

    CAS  Google Scholar 

  48. Craw, D. 1981. Oxidation and microprobe-induced potassium mobility in iron-bearing phyilosilicates from the Otago Schists, New Zealand. Lithos. 14:49–57.

    CAS  Google Scholar 

  49. Craw, D. 1984. Ferrous-iron-bearing vermiculite-smectite series formed during alteration of chlorite to kaolinite, Otago Schist, New Zealand. Clay Miner. 19:509–520.

    CAS  Google Scholar 

  50. Decarreau, A., and D. Bonnin. 1986. Synthesis and crystallogenesis at low temperature of Fe(III)-smectites by evolution of coprecipitated gels: experiments in partially reducing conditions. Clay Miner. 21:861–877.

    CAS  Google Scholar 

  51. Decarreau, A., F. Colin, A. Herbillon, A. Manceau, D. Nahon, H. Paquet, D. Trauth-Badaud, and J. J. Trescases. 1987. Domain segregation in Ni-Fe-Mg-smectites. Clays Clay Miner. 35:1–10.

    CAS  Google Scholar 

  52. Despraires, A. 1983. Relation entre le parametre b des smectites et leur contenu en fer et magnesium. Application a l’etude des sediments. Clay Miner. 18:165–175.

    Google Scholar 

  53. Drago, V., E. B. Saitovitch, and J. Danon. 1977. Moessbauer spectroscopy of electron irradiated natural layered silicates. Inorg. Nucl. Chem. 39:973–979.

    CAS  Google Scholar 

  54. Edelman, C. H., and J. C. L. Favejee. 1940. Crystal structure of montmoriilonite and halloysite. Z. Krist. 102:417–431.

    CAS  Google Scholar 

  55. Egashira, K., and M. Ohtsubo. 1983. Swelling and mineralogy of smectites in paddy soils derived from marine alluvium, Japan. Geoderma 29:119–127.

    CAS  Google Scholar 

  56. Eggieton, R. A. 1972. The crystal structure of stilpnomelane. Part II. The full cell. Mineral. Mag. 38:693–711.

    Google Scholar 

  57. Eggieton, R. A. 1977. Nontronite: chemistry and X-ray diffraction. Clay Miner. 12:181–94.

    Google Scholar 

  58. Eggieton, R. A. 1987. The application of micro-beam methods to iron minerals in soils, p. 165–201. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  59. Eirish, M. V., and A. A. Dvorechenskaya. 1976. Study of the position and role of iron(3+) ions in the structure of clay minerals by NGR spectroscopy (change of the state of the iron(3+) ions during montmoriilonite dehydration and dehydroxylation). Geokhimiya 1976:597–606.

    Google Scholar 

  60. Ericsson, T., J. Linares, and E. Lotse. 1984. A Mössbauer study of the effect of dithionite/citrate/bicarbonate treatment on a vermiculite, smectite and a soil. Clay Miner. 19:85–91.

    CAS  Google Scholar 

  61. Ertem, G. 1972. Irreversible collapse of montmorillonite. Clays Clay Miner. 20:199–205.

    CAS  Google Scholar 

  62. Eslinger, E., P. Highsmith, D. Albers, and B. De Mayo. 1979. Role of iron reduction in the conversion of smectite to illite in bentonite in the disturbed belt, Montana. Clays Clay Miner. 27:327–338.

    CAS  Google Scholar 

  63. Ewell, R. H., and P. R. Insley. 1935. Hydrothermal synthesis of kaolinite, dickite, beidellite and nontronite. J. Res. Nat. Bur. Standards 15:173–186.

    CAS  Google Scholar 

  64. Farmer, V. C. 1974. The Infrared Spectra of Minerals. Monograph No. 4. The Mineralogical Society, London.

    Google Scholar 

  65. Farmer, V. C., and J. D. Russell. 1964. The infrared spectra of silicates. Spectrochim. Acta 20:1149–1173.

    CAS  Google Scholar 

  66. Farmer, V. C., J. D. Russell, W. J, McHardy, A. C. D. Newman, J. L. Ahlrichs, and J. Y. H. Rimsaite. 1971. Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites. Mineral. Mag. 38:121–137.

    CAS  Google Scholar 

  67. Foster, M. D. 1953. Geochemical studies of clay minerals: II. relation between ionic substitution and swelling in montmorillonites. Am. Mineral. 38:994–1006.

    CAS  Google Scholar 

  68. Goodman, B. A. 1978a. An investigation by Mössbauer and EPR spectroscopy of the possible presence of iron-rich impurity phases in some montmorillonites. Clay Miner. 13:351–356.

    CAS  Google Scholar 

  69. Goodman, B. A. 1978b. The Mössbauer spectra of nontronites: consideration of an alternative assignment. Clays Clay Miner. 26:176–177.

    CAS  Google Scholar 

  70. Goodman, B. A. 1980. Mössbauer spectroscopy, p. 1–92. In J. W. Stucki and W. L. Banwart (eds.) Advanced Chemical Methods for Soil and Clay Minerals Research. D. Reidel, Dordrecht.

    Google Scholar 

  71. Goodman, B. A., and D. C. Bain. 1979. Mössbauer spectra of chlor-ites and their decomposition products. Dev. Sedimentol. 27:65–74.

    CAS  Google Scholar 

  72. Goodman, B. A., J. D. Russell, A. R. Fraser, and F. W. D. Woodhams. 1976. A Mössbauer and I.R. spectroscopic study of the structure of nontronite. Clays Clay Miner. 24:53–59.

    CAS  Google Scholar 

  73. Grim, R. E. 1968. Clay Mineralogy. McGraw Hill, New York.

    Google Scholar 

  74. Grim, R. E., and G. Kulbicki. 1961. Montmorillonite: high temperature reactions and classification. Am. Mineral. 46:1329–1369.

    CAS  Google Scholar 

  75. Grman, D., M. Pisarcik, and I. Novák. 1973. Investigation of octahedral isomorphous substitution in montmorillonites by means of infrared absorption spectroscopy. Silikaty 17:55–60.

    CAS  Google Scholar 

  76. Gruner, J. W. 1935. The structural relationship of nontronite and montmorillonite. Am. Mineral. 20:475–483.

    CAS  Google Scholar 

  77. Gruner, J. W. 1944. The composition and structure of minnesotaite, a common iron silicate in iron formations. Am. Mineral. 29:363–372.

    CAS  Google Scholar 

  78. Guggenheim, S., and S. W. Bailey. 1982. The super lattice of minnesotaite. Can. Mineral. 20:579–584.

    CAS  Google Scholar 

  79. Hamilton, G., and W. Furtwangler. 1951. Synthese von nontronit. Tschermaks Min. Petr. Mitt. 2:397–406.

    Google Scholar 

  80. Harder, H. 1978. Synthesis of iron layer silicate minerals under natural conditions. Clays Clay Miner. 26:65–72.

    CAS  Google Scholar 

  81. Hein, J. R., H.-W. Yeh, and E. Alexander. 1979. Origin of iron-rich montmorillonite from the Manganese Nodule Belt of the North Equatorial Pacific. Clays Clay Miner. 27:185–194.

    CAS  Google Scholar 

  82. Heller, L., V. C. Farmer, R. C. Mackenzie, B. D. Mitchell, and H. F. W. Taylor. 1962. The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals. Clay Miner. Bull. 5:56–72.

    CAS  Google Scholar 

  83. Heller-Kallai, L., and I. Rozenson. 1980. Dehydroxylation of dioctahedral phyllosilicates. Clays Clay Miner. 28:355–368.

    CAS  Google Scholar 

  84. Heller-Kallai L., and I. Rozenson. 1981. The use of Mössbauer spectrosscopy of iron in clay mineralogy. Phys. Chem. Miner. 7:223–238.

    CAS  Google Scholar 

  85. Hoffmann, U., K. Endell, and D. Wilm. 1933. The crystal structure and the swelling of montmorillonite. Z. Krist. 86:340–348.

    Google Scholar 

  86. Hush, N. S. 1967. Intervalence transfer absorption. Part 2. Theoretical considerations and spectroscopic data. Prog. Inorg. Chem. 8:391–444.

    CAS  Google Scholar 

  87. Isphording, W. C. 1975. Primary nontronite from Venezuelan Guyana. Am. Mineral. 60:840–848.

    CAS  Google Scholar 

  88. Israelachvili, J. N., and R. M. Pashley. 1983. Molecular layering of water at surfaces and origin of repulsive hydration forces. Nature 306:249–250.

    CAS  Google Scholar 

  89. Jepson, W. B. 1984. Kaolins: their properties and uses. Phil. Trans. R. Soc. Lond. A 311:411–432.

    CAS  Google Scholar 

  90. Jepson, W. B. 1987. Structural iron in kaolinites and associated ancillary minerals, p. 467–536. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  91. Johnston, J. H., and C. M. Cardile. 1985. Iron sites in nontronite and the effect of interlayer cations from Mossbauer spectra. Clays Clay Miner. 33:21–30.

    CAS  Google Scholar 

  92. Kager, P. C. A., and I. S. Oen. 1983. Iron-rich talc-opal-minnesotaite spherulites and crystallochemical relations of talc and minnesotaite. Mineral. Mag. 47:229–231.

    CAS  Google Scholar 

  93. Karickhoff, S. W., and G. W. Bailey. 1973. Optical absorption spectra of clay minerals. Clays Clay Miner. 21:59–70.

    CAS  Google Scholar 

  94. Kawasaki, H. 1974. Change of ferric iron to ferrous iron in 2:1 type layer silicates by reduction. Nippon Do jo Hiryogaku Zasshi 45:318–320.

    CAS  Google Scholar 

  95. Kerr, P. F. 1951. Preliminary Reports, Reference Clay Minerals. American Petroleum Institute Research Project 49, Columbia University, New York.

    Google Scholar 

  96. Kimbara, K., and S. Honda. 1975. An iron-rich saponite-like mineral found in the Moriyana volcanic rocks, Gojome, Akita Prefecture, Japan. Japan Geol. Survey Bulletin. 26:37–40.

    CAS  Google Scholar 

  97. Kodama, H., and C. R. de Kimpe. 1983. Ferruginous swelling clay minerals in a gabbro saprolite from Mount Megantic, Quebec. Can J. Soil Sci. 63:143–148.

    CAS  Google Scholar 

  98. Kohyama, N., S. Shimoda, and T. Sudo. 1973. Iron-rich saponite (ferrous and ferric forms). Clays Clay Miner. 21:229–237.

    CAS  Google Scholar 

  99. Kohyama, N., and T. Sudo. 1975. Hisingerite occurring as a weathering product of iron-rich saponite. Clays Clay Miner. 23:215–218.

    CAS  Google Scholar 

  100. Lahav, N., and A. Banin. 1968. Effect of various treatments on particle size and optical properties of montmorillonite suspensions. Isr. J. Chem. 6:285–294.

    CAS  Google Scholar 

  101. Lear, P. R. 1984. The use of tritium as a label to evaluate the redox mechanism of iron in nontronites. M. S. Thesis, University of Illinois.

    Google Scholar 

  102. Lear, P. R. 1987. The role of iron in nontronite and ferrihydride. Ph. D. Thesis, Unversity of Illinois.

    Google Scholar 

  103. Lear, P. R., and J. W. Stucki. 1985. The role of structural hydrogen in the reduction and reoxidation of iron in nontronite. Clays Clay Miner. 33:539–545.

    CAS  Google Scholar 

  104. Lear, P. R., and J. W. Stucki. 1987a. Intervalence electron transfer and magnetic exchange interactions in reduced nontronite. Clays Clay Miner. 35:(In Press).

    Google Scholar 

  105. Lear, P. R., and J. W. Stucki. 1987b. The effect of iron oxidation state on the surface area of nontronite. Clays Clay Miner. (In Preparation)

    Google Scholar 

  106. Lear, P. R., P. Komadel, and J. W. Stucki. 1987. Mössbauer spectroscopic characterization of iron impurities in nontronite from Hohen Hagen, Germany. Clays Clay Miner. (In Review).

    Google Scholar 

  107. Lerot, L., and P. F. Low. 1976. Effect of swelling on the infrared adsorption spectrum of montmorillonite. Clays Clay Miner. 24:191–199.

    CAS  Google Scholar 

  108. Lindquist, B., and S. Jansson. 1962. On the crystal chemistry of hisingerite. Am. Mineral. 47:1356–1362.

    Google Scholar 

  109. Lopes-Vieira, A., and J. Zussman. 1969. Further detail on the crystal structure of zussmanite. Mineral. Mag. 37:49–60.

    CAS  Google Scholar 

  110. Loveland, P. J. 1987. The say for iron in soils and clay minerals, p. 99–140. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  111. Low, P. F. 1980. The swelling of clay. II. Montmorillonites. Soil Sci. Soc. Am. J. 44:667–676.

    CAS  Google Scholar 

  112. Low, P. F., and J. F. Margheim. 1979. The swelling of clay. I. Basic concepts and empirical equations. Soil Sci. Soc. Am. J. 43:473–481.

    Google Scholar 

  113. Low, P. F., C. B. Roth, and J. W. Stucki. 1983. System and method for rapid beneficiation of bentonite clay. U. S. Patent No. 4,411,530.

    Google Scholar 

  114. MacKenzie, K. J. D., and D. E. Rogers. 1977. Thermal and Moessbauer studies of iron-containing hydrous silicates. I. Nontronite. Thermochim. Acta. 18:177–196.

    CAS  Google Scholar 

  115. Maksimović, Z. 1966. β-kerolite-pimelite series from Goles Mountain, Yugoslavia, p. 97–105. In L. Heller and A. Weiss (eds.) Proc. Int. Clay Conf., Jerusalem, 1966, Vol. 1. Israel Prog. Sci. Transl., Jerusalem.

    Google Scholar 

  116. Maksimović, Z., and G. W. Brindley. 1980. Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite. Clays Clay Miner. 28:295–302.

    Google Scholar 

  117. Malathi, N., S. P. Puri, and I. P. Saraswat. 1971. Mössbauer studies of iron in illite and montmorillonite. II: Thermal treatment. J. Phys. Soc. Jap. 31:117–122.

    CAS  Google Scholar 

  118. Marfunin, A. S., A. R. Mkrtchyan, G. N. Nadzharyan, Y. M. Nyussik, and A. N. Platonov. 1971. Optical and Mössbauer spectra of iron in some layered silicates. Izv. Akad. Nauk. SSSR, Ser. Geol. 1971:87–93.

    Google Scholar 

  119. McBride, M. B. 1979. Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation of benzidine. Clays Clay Miner. 27:224–230.

    CAS  Google Scholar 

  120. McBride, M. B., and M. M. Mortland. 1974. Copper(II) interactions with montmorillonite: Evidence from physical methods. Soil Sci. Soc. Am. Proc. 38:408–415.

    CAS  Google Scholar 

  121. McBride, M. B., M. M. Mortland, and T. J. Pinnavaia. 1975a. Exchange ion positions in smectite: Effect on electron spin resonance of structural iron. Clays Clay Miner. 23:162–164.

    CAS  Google Scholar 

  122. McBride, M. B., T. J. Pinnavaia, and M. M. Mortland. 1975b. Perturbation of structural Fe+3 in smectites by exchange ions. Clays Clay Miner. 23:103–107.

    CAS  Google Scholar 

  123. McConchie, D. M., J. B. Ward, V. H. Mann, and D. W. Lewis. 1979. A Mössbauer investigation of glauconite and its geological significance. Clays Clay Miner. 27:339–348.

    CAS  Google Scholar 

  124. McRae, S. G. 1972. Glauconite. Earth Sci. Rev. 8:397–440.

    CAS  Google Scholar 

  125. Mehra, O. P., and M. L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. p. 317–327. In Ada Swineford (ed.) Clays and Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C., 1958. Pergamon Press, New York.

    Google Scholar 

  126. Mering, J., and A. Oberlin. 1967. Electron-optical study of smectites. p. 3–25. In S. W. Bailey (ed.) Clays and Clay Minerals, Proc. 15th Natl. Conf., Pittsburgh, Pennsylvania, 1966. Pergamon Press, New York.

    Google Scholar 

  127. Mulla, D. J. 1983. The molecular dynamics, specific surface area, crystal composition, and swelling of clay-water systems. Ph.D. Thesis, Purdue University.

    Google Scholar 

  128. Müller, G., and U. Fürstner. 1976. Primary nontronite from Venezuelan Guyana: additional primary occurrences. Am. Mineral. 61:500–501.

    Google Scholar 

  129. Murad, E. 1987. Mossbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Z. Pflanzenernähr. Bodenk. (In Review).

    Google Scholar 

  130. Nahon, D. 1982. Modes of metal partitioning in solid solutions of rocks altered under tropical conditions: Application to supergene iron concentrations. Doc. B.R.G.M. 47:254–260.

    CAS  Google Scholar 

  131. Nahon, D., F. Colin, and Y. Tardy. 1982. Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Miner. 17:339–348.

    CAS  Google Scholar 

  132. Newman, A. C. D. 1984. The significance of clays in agriculture and soils. Phil. Trans. R. Soc. Lond. A 311:375–389.

    CAS  Google Scholar 

  133. Newman, A. C. D., and G. Brown. 1966. Chemical changes during the alteration of micas. Clay Miner. Bull. 6:297–310.

    CAS  Google Scholar 

  134. Novák, I., and B. Cícel. 1978. Dissolution of smectites in hydrochloric acid. II. Dissolution rate as a function of crystallochemical composition. Clays Clay Miner. 26:341–344.

    Google Scholar 

  135. Odom, I. E. 1984. Smectite clay minerals: properties and uses. Phil. Trans. R. Soc. Lond. A 311:391–409.

    CAS  Google Scholar 

  136. Olivier, P. D., J. C. Vedrine, and H. Pezerat. 1975. Application de la resonance paramagnetique electronique a la localization du Fe3+ das les smectites. Bull. Groupe Fr. Argiles 27:153–165.

    CAS  Google Scholar 

  137. Osthaus, B. B. 1954. Chemical determination of tetrahedral ions in nontronite and montmorillonite. p. 404–417. In Ada Swineford and Norman Plummer (eds.) Clays and Clay Minerals, Proc. 2nd Natl. Conf., Columbia, Missouri, 1953. Natl. Acad. Sci. Natl. Res. Counc. Publ., 327, Washington, D. C.

    Google Scholar 

  138. Paquet, H., J. Duplay, and D. Nahon. 1982. Variations in the composition of phyllosilicates monoparticles in a weathering profile of ultrabasic rocks, p. 6–12. In H. van Olphen and F. Veniale (eds.) Proc. 7th Int. Clay Conf., Bologna and Pavia, 1981. Elsevier, Amsterdam.

    Google Scholar 

  139. Pashley, R. M. 1982. Hydration forces between mica surfaces in electrolyte solutions. Adv. Colloid Interface Sci. 16:57–62.

    CAS  Google Scholar 

  140. Pedro., G., J. P. Carmouze, and B. Velde. 1978. Peloidal nontronite formation in recent sediments of Lake Chad. Chem. Geol. 23:139–149.

    CAS  Google Scholar 

  141. Petruk, W., D. M. Farrell, E. E. Laufer, R. J. Tremblay, and P. G. Manning. 1977. Nontronite and ferruginous opal from the Peace River iron deposit in Alberta, Canada. Can. Mineral. 15:14–21.

    Google Scholar 

  142. Poppi, L., and M. F. Brigatti. 1976. Cristailochimica e caratteristiche termiche di alcune montmorilloniti italiane. Miner. Petrogr. Acta. 21:43–52.

    Google Scholar 

  143. Protod’yakonova, Z. M., and M. R. Enikeev. 1976. Phyllosilicates: Montmorillonite group. Saponite ((Ca, Na)X[Mg3ALxSi4-x]O10(OH)2.4H2O), zinc saponite (sauconite) (Zn, Mg, Al, Fe)3[AlxSi4-X,]O10 (OH) 2.4H2O), and copper saponite ((Ga, Na)X [(Mg, Cu)3,Al XSi4-X] O10 (OH)2.4H2O). Miner. Uzb. 3:334–339. (From Chem. Abstr. 91: 126188.)

    Google Scholar 

  144. Quakernaat, J. 1970. A new occurrence of a macrocrystalline form of saponite. Clay Miner. 8:491–493.

    CAS  Google Scholar 

  145. Quantin, P., A. J. Herbillon, C. Janot, and G. Siefferman. 1984. L’halloysite blance riche en fer de Vate (Vanuatu) — hypothese d’un edifice interstratifile halloysite-hisingerite. Clay Miner. 19:629–643.

    CAS  Google Scholar 

  146. Radoslovich, E. W. 1962. The cell dimensions and symmetry of layer lattice silicates. II. Regression relations. Am. Mineral. 47:617–636.

    CAS  Google Scholar 

  147. Ross, C. S. 1946. Sauconite — a clay mineral of the montmorillonite group. Am. Mineral. 31:411–424.

    CAS  Google Scholar 

  148. Ross, G. J. 1975. Experimental alteration of chlorites into vermiculites by chemical oxidation. Nature 255:133–134.

    CAS  Google Scholar 

  149. Ross, C. S., and S. B. Hendricks. 1945. Minerals of the montmorillonite group. Their origin and relation to soils and clays. U.S. Geol. Surv., Profess. Paper 205b:23–79.

    Google Scholar 

  150. Ross, G. J., and H. Kodama. 1976. Experimental alteration of a chlorite into a regularly interstratified chlorite-vermiculite by chemical oxidation. Clays Clay Miner. 24:183–190.

    CAS  Google Scholar 

  151. Roth, C. B., M. L. Jackson, E. G. Lotse, and J. K. Syers. 1968. Ferrous-ferric ratio and C.E.C. changes on deferration of weathered micaceous vermiculites. Isr. J. Chem. 6:261–273.

    CAS  Google Scholar 

  152. Roth, C. B., M. L. Jackson, and J. K. Syers. 1969. Deferration effect on structural ferrous-ferric iron ratio and CEC of vermiculites and soils. Clays Clay Miner. 17:253–264.

    CAS  Google Scholar 

  153. Roth, C. B., and R. J. Tullock. 1973. Deprotonation of nontronite resulting from chemical reduction of structural ferric iron. p. 107–114. In J. M Serratosa (ed.) Proc. Int. Clay Conf., Madrid, 1972. Div. Ciencias C.S.I.C., Madrid.

    Google Scholar 

  154. Rozenson, I., and L. Heller-Kallai. 1976a. Reduction and oxidation of Fe3+ in dioctahedral smectite--1: Reduction with hydrazine and dithionite. Clays Clay Miner. 24:271–282.

    CAS  Google Scholar 

  155. Rozenson, I., and L. Heller-Kallai. 1976b. Reduction and oxidation of Fe3+ in dioctahedral smectite--2: Reduction with sodium sulphide solution. Clays Clay Miner. 24:283–288.

    CAS  Google Scholar 

  156. Rozenson, I., and L. Heller-Kallai. 1978a. Reduction and oxidation of Fe3+ in dioctahedral smectites: III. Oxidation of octahedral iron in montmorillonite. Clays Clay Miner. 26:88–92.

    CAS  Google Scholar 

  157. Rozenson, I., and L. Heller-Kallai. 1978b. Mossbauer spectra of glauconites reexamined. Clays Clay Miner. 26:173–175.

    CAS  Google Scholar 

  158. Rozenson, I., and L. Heller-Kallai. 1981. Mossbauer studies of paly-gorskite and some aspects of palygorskite mineralogy. Clays Clay Miner. 29:226–232.

    Google Scholar 

  159. Russell, J. D. 1979. An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonites with alkali metal hydroxides. Clay Miner. 14:127–137.

    CAS  Google Scholar 

  160. Russell, J. D., and D. R. Clark. 1978. The effect of Fe-for-Si substitution on the b-dimension of nontronite. Clay Miner. 13:133–318.

    CAS  Google Scholar 

  161. Russell, J. D., B. A. Goodman, and A. R. Fraser. 1979. Infrared and Mössbauer studies of reduced nontronites. Clays Clay Miner. 27:63–71.

    CAS  Google Scholar 

  162. Scheid, A. 1946. Nontronite in the Columbia River region. Am. Mineral. 31:294–311.

    Google Scholar 

  163. Scott, A. D., and J. Amonette. 1987. The role of iron in mica weathering, p. 537–623. In Joseph W. Stucki, Bernard A. Goodman, and U. Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht.

    Google Scholar 

  164. Seyfried, W. R., Jr., and J. L. Bischoff. 1979. Low temperatture basalt alteration by seawater: An experimental study at 70 degree C and 150 degree C. Geochim. Cosmochim. Acta. 43:1937–1947.

    CAS  Google Scholar 

  165. Smillie, G. W., and D. Curtin. 1981. Composition and origin of smectite in soils derived from Basalt in northern Ireland. Clays Clay Miner. 29:277–284.

    Google Scholar 

  166. Stucki, J. W., and C. B. Roth. 1976. Interpretation of infrared spectra of oxidized and reduced nontronite. Clays Clay Miner. 24:293–296.

    CAS  Google Scholar 

  167. Stucki, J. W., and C. B. Roth. 1977. Oxidation-reduction mechanism for structural iron in nontronite. Soil Sci. Soc. Am. J. 41: 808–814.

    CAS  Google Scholar 

  168. Stucki, J. W., C. B. Roth, and W. E. Baitinger. 1976. Analysis of iron-bearing clay minerals by electron spectroscopy for chemical analysis (ESCA). Clays Clay Miner. 24:289–292.

    CAS  Google Scholar 

  169. Stucki, J. W., D. C. Golden, and C. B. Roth. 1984a. The preparation and handling of dithionite-reduced smectite suspensions. Clays Clay Miner. 32:191–197.

    CAS  Google Scholar 

  170. Stucki, J. W., D. C. Golden, and C. B. Roth. 1984b. Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Miner. 32:350–356.

    CAS  Google Scholar 

  171. Stucki, J. W., P. F. Low, C. B. Roth, and D. C. Golden. 1984c. Effects of oxidation state of octahedral iron on clay swelling. Clays Clay Miner. 32:357–362.

    CAS  Google Scholar 

  172. Stucki, J. W., P. Komadel, and H. T. Wilkinson. 1987. The microbial reduction of structural iron(III) in smectites. Soil Sci. Soc. Am. J. (In Review).

    Google Scholar 

  173. Sudo, T. 1954. Iron-rich saponite from Tertiary iron sand beds of Japan. J. Geol. Soc. Japan 60:18–27.

    CAS  Google Scholar 

  174. Sudo, T., and T. Nakamura. 1952. Hisingerite from Japan. Am. Mineral. 37:618–621.

    CAS  Google Scholar 

  175. Suquet, H., C. Malard, E. Copin, and H. Pezerat. 1981. Variation du paramétré b et de la distance basale d 0 0 1 dans une série de saponites a charge croissante: I. Etats hydrates. Clay Miner. 16:53–67.

    CAS  Google Scholar 

  176. Tardy, Y., and O. Touret. 1987. Hydration energies of smectites: a model for glauconite, illite, and corrensite formation, p. 46–52. In L. G. Schulze, H. van Olphen, and F. A. Mumpton (eds.) Proc. Int. Clay Conf., Denver, 1985. The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  177. Tennakoon, D. T. B., J. M. Thomas, and M. J. Tricker. 1974. Surface and intercalate chemistry of layered silicates. Part II. An iron-57 Mössbauer study of the role of lattice-substituted iron in the benzidine biue reaction of montmorillonite. J. Chem. Soc. (Daiton Trans.) 1974:2207–2211.

    Google Scholar 

  178. Thompson, G. R., and J. Hower. 1975. The mineralogy of glauconite. Clays Clay Miner. 23:289–300.

    CAS  Google Scholar 

  179. Tsipursky, S. I., and V. A. Drits. 1984. The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner. 19:177–193.

    CAS  Google Scholar 

  180. Viani, B. E., P. F. Low, and C. B. Roth. 1983. Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite. J. Colloid Interface Sci. 96:229–243.

    CAS  Google Scholar 

  181. Warkentin, B. P., G. H. Bolt, and R. D. Miller. 1957. Swelling pressure of montmorillonite. Soil Sci. Soc. Am. Proc. 21:495–497.

    Google Scholar 

  182. Weaver, C. E., and L. D. Pollard. 1973. The Chemistry of Clay Minerals. Elsevier, Amsterdam.

    Google Scholar 

  183. Whelan, J. A., and S. S. Goldich. 1961. New data for hisingerite and neotocite. Am. Mineral. 46:1412–1423.

    CAS  Google Scholar 

  184. Wilson, M. J. 1987. Soil smectites and related interstratified minerals: Recent developments, p. 167–173. In L. G. Schuize, H. van Olphen, and F. A. Mumpton (eds.) Proc. Int. Clay Conf., Denver, 1985. The Clay Minerals Society, Bloomington, Indiana.

    Google Scholar 

  185. Wu, J., C. B. Roth, and P. F. Low. 1987. Biological reduction of structural iron in Na-nontronite. Soil Sci. Soc. Am. J. (In Review).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Stucki, J.W. (1988). Structural Iron in Smectites. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics