Skip to main content

Properties and Behavior of Iron Oxides as Determined by Mössbauer Spectroscopy

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

During the decay of excited nuciear states, γ-rays are emitted which typically have energies that lie in the keV to MeV range. Because of these high energies, nuclei experience a significant impulse during emission and absorption of γ-quanta, i,e., they can recoil to a certain extent, and the γ-ray energy will change accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Annersten, H., and S. S. Hafner. 1973. Vacancy distribution in synthetic spinels of the series Fe3 O4 -γ-Fe2 O3. Z. Krist. 137:321–340.

    Article  CAS  Google Scholar 

  2. Banerjee, S. K., W. O’Reilly, T. C. Gibb, and N. N. Greenwood. 1966. Influence on hyperfine field of local variations in inverse spinel. Phys. Lett. 20:455–457.

    Article  CAS  Google Scholar 

  3. Bauminger, R., S. G. Cohen, A. Marinov, S. Ofer, and E. Segal. 1961. Study of the low-temperature transition in magnetite and the internal fields acting on iron nuclei in some spinel ferrites using Mössbauer absorption. Phys. Rev. 122:1447–1450.

    Article  CAS  Google Scholar 

  4. Bigham, J. M., D. C. Golden, L. H. Bowen, S. W. Buol, and S. B. Weed. 1978. Iron oxide mineralogy of well-drained Ultisois and Oxisols: I. Characterization of iron oxides in soil clays by Mössbauer spectroscopy, X-ray diffractometry, and selected chemical techniques. Soil Sci. Soc. Am. J. 42:816–825.

    Article  CAS  Google Scholar 

  5. Bowen, L. H., and S. B. Weed. 1984. Mössbauer spectroscopy of soils and sediments, p. 217–242. In R. H. Herber (ed.) Chemical Mössbauer Spectroscopy. Plenum Publishing Corporation, New York.

    Chapter  Google Scholar 

  6. Chambaere, D., A. Govaert, J. DeSitter, and E. DeGrave. 1978. A Mössbauer investigation of the quadrupole splitting in β-FeOOH. Solid State Comm. 26:657–659.

    Article  CAS  Google Scholar 

  7. Childs, C. W., and J. H. Johnston. 1980. Mössbauer spectra of protferrihydrite at 77 K and 295 K, and a reappraisal of the possible presence of akaganéite in New Zealand soils. Aust. J. Soil Res. 18: 245–250.

    Article  CAS  Google Scholar 

  8. Chukhrov, F. V., B. B. Zvyagin, L. P. Ermilova, and A. I. Gorshkov. 1973. New data on iron oxides in the weathering zone. p. 397–404 In J. M. Serratosa (ed.) Proc. Int. Clay Conf., 1972, Madrid, Volume 1. Divi. Ciencias C.S.I.C., Madrid.

    Google Scholar 

  9. Coey, J. M. D., and D. Khalafalla. 1972. Superparamagnetic γ Fe2 O3. Phys. Stat. Sol. A. 11:229–241.

    Article  CAS  Google Scholar 

  10. Coey, J. M. D., A. H. Morrish, and G. A. Sawatzky. 1971. A Mössbauer study of conduction in magnetite. J. Physique 32 C1:271–273.

    Google Scholar 

  11. Coey, J. M. D., and P. W. Readman. 1973. New spin structure in an amorphous ferric gel. Nature 246:476–478.

    Article  CAS  Google Scholar 

  12. Creer, K. M., I. G. Hedley, and W. O’Reilly. 1975. Magnetic oxides in geomagnetism, p. 649–688. In D. J. Craik (ed.)Magnetic Oxides. J. Wiley, London.

    Google Scholar 

  13. DeGrave, E., L. H. Bowen, and S. B. Weed. 1982. Mössbauer study of aluminum-substituted hematites. J. Magnetism Magnetic Mater. 27: 98–108.

    Article  CAS  Google Scholar 

  14. DeGrave, E., D.G. Chambaere, and L. H. Bowen. 1983. Nature of the Morin transition in Al-substituted hematite. J. Magnetism Magnetic Mater. 30:349–354.

    Article  CAS  Google Scholar 

  15. DeGrave, E., A. E. Verbeeck, and D. G. Chambaere. 1985. Influence of small aluminum substitutions on the hematite lattice. Phys. Lett. A 107:181–184.

    Article  Google Scholar 

  16. Dehe, G., B. Seidel, K. Melzer, and C. Michalk. 1975. Determination of a cation distribution model of the spinel system Fe3-X A1X O4. Phys. Stat. Sol. A. 31:439–447.

    Article  CAS  Google Scholar 

  17. Dzyaloshinskii, I. E. 1957. Thermodynamic theory of “weak” ferro-magnetism in antiferromagnetic substances. Sov. Phys. JETP 5: 1259–1272.

    Google Scholar 

  18. Flanders, P. J., and J. P. Remeika. 1965. Magnetic properties of hematite single crystals. Phil. Mag. 11:1271–1288.

    Article  CAS  Google Scholar 

  19. Fleisch, J., R. Grimm, J. Grübler, and P. Gütlich. 1980. Determination of the aluminum content of natural and synthetic alumogoethites using Mössbauer spectroscopy. J. Physique 41 C1: 169–170.

    Google Scholar 

  20. Forsyth, J. B., I. G. Hedley, and C. E. Johnson. 1968. The magnetic structure and hyperfine field of goethite (α-FeOOH). J. Phys. C1: 179–188.

    Google Scholar 

  21. Fysh, S. A., and P. E. Clark. 1982a. Aluminous hematite: a Mössbauer study. Phys. Chem. Miner. 8:257–267.

    Article  CAS  Google Scholar 

  22. Fysh, S. A., and P. E. Clark. 1982b. Aluminous goethite: a Mössbauer study. Phys. Chem. Miner. 8:180–187.

    Article  CAS  Google Scholar 

  23. Fysh, S. A., and P. E. Clark. 1984. On Mössbauer analysis of mineral mixtures having environmentally broadened spectral lines. Application to bauxite. Phys. Stat. Sol. A 84:31–38.

    Article  CAS  Google Scholar 

  24. Gastebois, J., and J. Quidort. 1961. Mise en evidence du moment quadrupolaire du noyau du fer 57. C. R. Acad. Sci., Paris 253:1257–1259.

    CAS  Google Scholar 

  25. Golden, D. C., L. H. Bowen, S. B. Weed, and J. M. Bigham. 1979. Mössbauer studies of synthetic and soil-occurring aluminum-substituted goethites. Soil Sci. Soc. Am. J. 43:802–808.

    Article  CAS  Google Scholar 

  26. Goodman, B. A., and D. G. Lewis. 1981. Mössbauer spectra of aluminous goethites (α-FeOOH). J. Soil Sci. 32:1–363.

    Article  Google Scholar 

  27. Häggström, L., H. Annersten, T. Ericsson, R. Wäppling, W. Karner, and S. Bjarman. 1978. Magnetic dipolar and electric quadrupolar effects on the Mössbauer spectra of magnetite above the Verwey transition. Hyperfine Interact. 5:201–214.

    Article  Google Scholar 

  28. Haneda, K., and A. H. Morrish. 1977a. Vacancy ordering in small particles. Solid State Comm. 22:779–782.

    Article  CAS  Google Scholar 

  29. Haneda, K., and A. H. Morrish. 1977b. On the hyperfine field of γ-Fe2O3 small particles. Phys. Lett. A 64:259–262.

    Article  Google Scholar 

  30. Hargrove, R. S., and W. Kündig. 1970. Mössbauer measurements of magnetite below the Verwey transition. Solid State Comm. 8: 303–308.

    Article  CAS  Google Scholar 

  31. Hogg, C. S., P. J. Maiden, and R. E. Meads. 1975. Identification of iron-containing impurities in natural kaolinites using the Mössbauer effect. Mineral. Mag. 40:89–96.

    Article  CAS  Google Scholar 

  32. Irshinskii, A. L., and V. M. Cherepanov. 1980. Mössbauer study of the critical behavior of hematite. Sov. Phys. JETP 51:644–646.

    Google Scholar 

  33. Janot, C., and H. Gibert. 1970. Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer. Bull. Soc. Franç. Minér. Cristall. 93:213–223.

    CAS  Google Scholar 

  34. Janot, C., H. Gibert, and C. Tobias. 1973. Caractérisai ion de kaolinites ferrifères par spectrométrie Mössbauer. Bull. Soc. Franç. Minér. Cristall. 96:281–291.

    CAS  Google Scholar 

  35. Johnston, J. H., and K. Norrish. 1981. A 57Fe Mössbauer spectroscopic study of a selection of Australian and other goethites. Aust. J. Soil. Res. 19:231–2J7.

    Article  CAS  Google Scholar 

  36. Jónás, K., K. Solymar, and J. Zöldi. 1980. Some applications of Mössbauer spectroscopy for the quantitative analysis of minerals and mineral mixtures. J. Molec. Struct. 60:449–452.

    Article  Google Scholar 

  37. Kistner, O. C., and A. W. Sunyar. 1960. Evidence for quadrupole interaction of Fe57, and influence of chemical binding on nuclear gamma-ray energy. Phys. Rev. Lett. 4:412–415.

    Article  CAS  Google Scholar 

  38. Kündig, W., H. Bommel, G. Constabaris, and R. H. Lindquist. 1966. Some properties of supported small α-Fe2 O3 particles determined with the Mössbauer effect. Phys. Rev. 142:327–333.

    Article  Google Scholar 

  39. Kündig, W., and R. S. Hargrove. 1969. Electron hopping in magnetite. Solid State Comm. 7:223–227.

    Article  Google Scholar 

  40. Lindsley, D. H. 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides, p. L1-L60. In P. H. Ribbe (ed.) Oxide Minerals. Mineralogical Society of America, Washington, D.C.

    Google Scholar 

  41. Mathalone, Z., M. Ron, and A. Biran. 1970. Magnetic ordering in iron gel. Solid State Comm. 8:333–336.

    Article  CAS  Google Scholar 

  42. McNab, T. K., R. A. Fox, and A. J. F. Boyle. 1968. Some magnetic properties of magnetite (Fe3O4) microcrystals. J. Appl. Phys. 39:5703–5711.

    Article  CAS  Google Scholar 

  43. Meisel, W., and G. Kreysa. 1973. Relative Mössbauer-konstanten von eisenverbindungen zur quantitativen analyse von gemischen. Z. Anorg. Allg. Chem. 395:31–36.

    Article  Google Scholar 

  44. Morrish, A. H., G. B. Johnston, and N. A. Curry. 1963. Magnetic transition in pure and Ga doped α-Fe2O3. Phys. Lett. 7: 177–178.

    Article  CAS  Google Scholar 

  45. Mössbauer, R. L. 1958a. Kernresonanzabsorption von gammastrah-lung in Ir191. Naturwissenschaften 45:538–539.

    Article  Google Scholar 

  46. Mössbauer, R. L. 1958b. Kernresonanzfluoreszenz von gammastrahlung in Ir191. Z. Physik 151:124–143.

    Article  Google Scholar 

  47. Mørup, S., and H. Topsøe. 1976. Mössbauer studies of thermal excitations in magnetically ordered microcrystals. Appl. Phys. 11:63–66.

    Article  Google Scholar 

  48. Mørup, S., M. B. Madsen, J. Franck, J. Villadsen, and C. J. W. Koch. 1983. A new interpretation of Mössbauer spectra of microcrystalline goethite: “super-ferromagnetism” or “super-spin-glass” behaviour? J. Magnetism Magnetic Mater. 40:163–174.

    Article  Google Scholar 

  49. Murad, E. 1979. Mössbauer spectra of goethite: evidence for structural imperfections. Mineral. Mag. 43:355–361.

    Article  CAS  Google Scholar 

  50. Murad, E. 1982a. The characterization of goethite by Mössbauer spectroscopy. Am. Mineral. 67:1007–1011.

    CAS  Google Scholar 

  51. Murad, E. 1982b. Iron oxide mineralogy of a hydrothermal assemblage on Santorini Island, Aegean Sea. Mineral. Mag. 46: 89–93.

    Article  CAS  Google Scholar 

  52. Murad, E. 1982c. Ferrihydrite deposits in an artesian fountain in lower Bavaria. N. Jahrb. Mineral. Mh.:45–56.

    Google Scholar 

  53. Murad, E. 1984. High-precision determination of magnetic hyperfine fields by Mössbauer spectroscopy using an internal standard. J. Phys. E 17:736–737.

    Article  CAS  Google Scholar 

  54. Murad, E. 1985. The influence of aluminium substitution on the absorption of gamma-rays in hematite. Phys. Lett. A 111:79–82.

    Article  Google Scholar 

  55. Murad, E., and L. H. Bowen. 1985. The character of magnetic ordering in high-Al goethite and ferrihydrite. Int. Clay Conf. Abstracts, Denver, 1985:163.

    Google Scholar 

  56. Murad, E., and U. Schwertmann. 1980. The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxides. Am. Mineral. 65:1044–1049.

    Google Scholar 

  57. Murad, E., and U. Schwertmann. 1983. The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Miner. 18:301–312.

    Article  CAS  Google Scholar 

  58. Murad, E., and U. Schwertmann. 1984. The influence of crystallinity on the Mössbauer spectrum of lepidocrocite. Mineral. Mag. 48: 507–511.

    Article  CAS  Google Scholar 

  59. Murad, E., and U. Schwertmann. 1986. The influence of A1 substitution and crystallinity on the room-temperature Mössbauer spectrum of hematite. Clays Clay Miner. 34:1–6.

    Article  CAS  Google Scholar 

  60. Murad, E., and R. M. Taylor. 1984. The Mössbauer spectra of hydroxycarbonate green rusts. Clay Miner. 19:77–83.

    Article  CAS  Google Scholar 

  61. Murad, E., and R. M. Taylor. 1986. The oxidation of hydroxycarbonate green rusts, p. 585–594. In G. J. Long and J. G. Stevens (eds.) Industrial Applications of the Mössbauer Effect. Plenum Publishing Co., New York.

    Google Scholar 

  62. Néel, L. 1948. Propriétés magnétiques des ferrites: ferrimagnétisme et antiferromagnétisme. Ann. Phys. 3:137–198.

    Google Scholar 

  63. Nininger, R. C., and D. Schroeer. 1978. Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2 O3. J. Phys. Chem. Solids 39:137–144.

    Article  CAS  Google Scholar 

  64. Readman, P. W., W. O’Reilly, and S. K. Banerjee. 1967. An explanation of the magnetic properties of Fe2 TiO4. Phys. Lett. A 25:446–447.

    Article  CAS  Google Scholar 

  65. Roggwiller, R., and W. Kündig. 1970. Mössbauer spectra of superparamagnetic Fe3O4. Solid State Comm. 12:901–903.

    Article  Google Scholar 

  66. Sawatzky, G. A., J. M. D. Coey, and A. H. Morrish. 1969. Mössbauer study of electron hopping in the octahedral sites of Fe3 O4. J. Appl. Phys. 40:1402–1403.

    Article  CAS  Google Scholar 

  67. Schwertmann, U. 1985. The effect of pedogenic environments on iron oxide minerals. Adv. Soil Sci. 1:171–200.

    Article  CAS  Google Scholar 

  68. Schwertmann, U., P. Cambier, and E. Murad. 1985. Properties of goethites of-varying crystallinity. Clays Clay Miner. 33:369–378.

    Article  CAS  Google Scholar 

  69. Schwertmann, U. and H. Fechter. 1974. The influence of aluminum on iron oxides. XI. Aluminum-substituted maghemite in soils and its formation. Soil Sci. Soc. Am. J. 48:1462–1463.

    Article  Google Scholar 

  70. Schwertmann, U., R. W. Fitzpatrick, R. M. Taylor, and D. G. Lewis. 1979. The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites. Clays Clay Miner. 27: 105–112.

    Article  CAS  Google Scholar 

  71. Schwertmann, U., E. Murad, and D. G. Schulze. 1982a. Is there Holocene reddening (hematite formation) in soils of axeric temperate areas? Geoderma 27:209–223.

    Article  CAS  Google Scholar 

  72. Schwertmann, U., D. G. Schulze, and E. Murad. 1982b. Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mössbauer spectroscopy. Soil Sci. Soc. Am. J. 46: 869–875.

    Article  CAS  Google Scholar 

  73. Sváb, E., and E. Krén. 1979. Neutron diffraction study of substituted hematite. J. Magnetism Magnetic Mater. 14:184–186.

    Article  Google Scholar 

  74. Taylor, R. M. 1980. Formation and properties of Fe(II)Fe(III) hydroxy-carbonate and its possible significance in soil formation. Clay Miner. 15:369–382.

    Article  CAS  Google Scholar 

  75. Taylor, R. M. 1982. Stabilization of colour and structure in the pyroaurite-type compounds Fe(II)Fe(III)Al(III)-hydroxy-carbonates. Clay Miner. 17:369–372.

    Article  CAS  Google Scholar 

  76. Taylor, R. M., and R. M. Menzie. 1980. The influence of aluminum on iron oxides. VI. The formation of Fe(II)-Al(III) hydroxyl-chlorides, -sulfates, and -carbonates as new members of the pyroaurite group and their significance in soils. Clays Clay Miner. 28: 179–187.

    Article  CAS  Google Scholar 

  77. Taylor, R. M., and U. Schwertmann. 1974. Maghemite in soils and its origin. II. Maghemite syntheses at ambient temperatures and 7. Clay Miner. 10:299–310.

    Article  CAS  Google Scholar 

  78. van der Kraan, A. M. 1973. Mössbauer effect studies of surface ions of ultrafine α-FeOOH particles. Phys. Stat. Sol. A 18:215–226.

    Article  Google Scholar 

  79. van der Woude, F. 1966. Mössbauer effect in α-FeOOH. Phys. Stat. Sol. 17:417–432.

    Article  Google Scholar 

  80. van der Woude, F., and A. J. Dekker. 1966. Mössbauer effect in α-FeOOH. Phys. Stat. Sol. 13:181–193.

    Article  Google Scholar 

  81. Verwey, E. J. W. 1935. The crystal structure of γ-Fe2 O3 and γ-A12O3. Z. Krist. 91:65–69.

    CAS  Google Scholar 

  82. Wickman, H. H. 1966. Mössbauer paramagnetic fine structure. Mössbauer Effect Methodology 2:39–66.

    Google Scholar 

  83. Window, B. 1971. Hyperfine field distributions from Mössbauer spectra. J. Phys. E 4:401–402.

    Article  CAS  Google Scholar 

  84. Wivel, C., and S. Mørup. 1981. Improved computational procedure for evaluation of overlapping hyperfine parameter distributions in Mössbauer spectra. J. Phys. E 14:605–610.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Murad, E. (1988). Properties and Behavior of Iron Oxides as Determined by Mössbauer Spectroscopy. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics