Skip to main content

The Geobiochemical Cycle of Iron

  • Chapter
Iron in Soils and Clay Minerals

Part of the book series: NATO ASI Series ((ASIC,volume 217))

Abstract

Among the most important factors governing the geochemical behavior of Fe are the following: a) the relatively high abundance of this element; b) the fact that it can form stable compounds in both the divalent and trivalent states (and change its valence depending on extraneous conditions); c) the resemblances of the ionic radii of Fe in these oxidation states to those of other major elements; d) its affinity (in the earth’s crust) for both the lithophile and chalcophile groups; and e) its inclination to form insoluble hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Antweiler, R. C., and J. I. Drever. 1983. The weathering of a late Tertiary volcanic ash: importance of organic solutes. Geochim. Cosmochim. Acta 47:623–629.

    Article  CAS  Google Scholar 

  2. Berner, R. A. 1970. Iron. Abundance in natural waters, p. 26–1-1. In K. H. Wedepohl (ed.) Handbook of Geochemistry, Vol. II-3. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  3. Berner, R. A. 1981. A new geochemicai classification of sedimentary environments. J. Sed. Petrol. 51:359–365.

    CAS  Google Scholar 

  4. Berner, R. A., and J. Schott. 1982. Mechanism of pyroxene and amphibole weathering IL Observations of soil grains. Am. J. Sci. 282:1214–1231.

    Article  CAS  Google Scholar 

  5. Bewers, J. M., B. Sundby, and P. A. Yeats. 1976. The distribution of trace metals in the western North Atlantic. Geochim. Cosmochim. Acta 40:687–696.

    Article  CAS  Google Scholar 

  6. Braun, V. 1981. Eisenversorgung und Virulenz bei Escherichia coli. Forum Mikrobiol. 2:69–72.

    Google Scholar 

  7. Cawsey, D. C., and P. Mellon. 1983. A review of experimental weathering of basic igneous rocks, p. 19–24. In R. C. L. Wilson (ed.) Residual Deposits: Surface Related Weathering Products and Materials. Special Publication No. 11. Geological Society, London.

    Google Scholar 

  8. Clauer, N., J. R. O’Neil, and C. Bonnot-Courtois. 1982. The effect of natural weathering on the chemical and isotopic compositions of biotites. Geochim. Cosmochim. Acta 46:1755–1762.

    Article  CAS  Google Scholar 

  9. Eggleton, R. A., and J. N. Boland. 1982. Weathering of enstatite to talc through a sequence of transitional phases. Clays Clay Miner. 30: 11–20.

    Article  CAS  Google Scholar 

  10. Fischer, W. R. 1987. Microbial reactions of Fe in soils, p. 715–748. In Joseph W. Stucki, Bernard A. Goodman, and Udo Schwertmann (eds.) Iron in Soils and Clay Minerals. D. Reidel, Dordrecht. (This Volume)

    Google Scholar 

  11. Fritz, S. J., and D. W. Mohr. 1984. Chemical alteration in the microweathering environment within a spheroidally-weathered anorthosite boulder. Geochim. Cosmochim. Acta 48:2527–2535.

    Article  CAS  Google Scholar 

  12. Garrels, R. M., and F. I. Mackenzie. 1971. Evolution of Sedimentary Rocks. W. W. Norton and Co., New York.

    Google Scholar 

  13. Gilkes, R. J., and A. Suddhiprakarn. 1979. Biotite alteration in deeply weathered granite. II. The oriented growth of secondary minerals. Clays Clay Miner. 27:361–367.

    Article  CAS  Google Scholar 

  14. Goldich, S. S. 1938. A study in rock-weathering. J. Geol. 46:17–58.

    Article  CAS  Google Scholar 

  15. Goldschmidt, V. M. 1954. Geochemistry. Clarendon Press, Oxford.

    Google Scholar 

  16. Granick, S., and P. F. Hahn. 1944. Speed of uptake of iron by the liver and its conversion to ferritin iron. J. Biol. Chem. 155:661–669.

    CAS  Google Scholar 

  17. Harrison, P. M., and T. G. Hoy. 1973. Ferritin, p. 253–279. In G. L. Eichhorn (ed.) Inorganic Biochemistry, Vol. 1. Elsevier, Amsterdam.

    Google Scholar 

  18. Huang, W. H., and W. D. Keller. 1971. Dissolution of clay minerals in dilute organic acids at room temperature. Am. Mineral. 56:1082–1095.

    CAS  Google Scholar 

  19. Johnston, J. H., and G. P. Glasby. 1982. A Mössbauer spectroscopic and X-ray diffraction study of the iron mineralogy of some sediments from the Southwestern Pacific Basin. Marine Chem. 11:437–448.

    Article  CAS  Google Scholar 

  20. Karlson, P. 1966. Kurzes Lehrbuch der Biochemie. G. Thieme, Stuttgart.

    Google Scholar 

  21. Krishnaswami, S. 1976. Authigenic transition elements in Pacific pelagic clays. Geochim. Cosmochim. Acta 40:425–434.

    Article  CAS  Google Scholar 

  22. Krumbein, W. C., and R. M. Garrels. 1952. Origin and classification of chemical sediments in terms of pH and oxidation-reduction potentials. J. Geol. 60:1–33.

    Article  CAS  Google Scholar 

  23. Kussmaul, H. 1969. Vergleich von Lössböden unter Laubwald und Acker. Ph.D. Thesis, Universität München.

    Google Scholar 

  24. Lengweiler, H., W. Buser, and W. Feitknecht. 1961. Die Ermittlung der Löslichkeit von Eisen(III)-hydroxiden mit 59Fe. II. Der Zustand kleinster Mengen Eisen(III)-hydroxid in wässriger Lösung. Helvet. Chim. Acta 44:805–811.

    Article  CAS  Google Scholar 

  25. Lewis, G. J., and E. D. Goldberg. 1954. Iron in marine waters. J. Marine Res. 13:183–197.

    CAS  Google Scholar 

  26. Livingstone, D. A. 1963. Chemical composition of rivers and lakes. In M. Fleischer (ed.) Data of Geochemistry, Sixth Edition. Professional Paper 440-G. U.S. Geological Survey, Washington, D. C.

    Google Scholar 

  27. Loughnan, F. C. 1969. Chemical Weathering of the Silicate Minerals. Elsevier, New York.

    Google Scholar 

  28. Mackenzie, F. T., and R. M. Garrels. 1966. Chemical mass balance between rivers and oceans. Am. J. Sci. 264:507–525.

    Article  CAS  Google Scholar 

  29. Mayer, R., and H. Heinrichs. 1980. Flüssebilanzen und aktuelle Änderungsraten der Schwermetall-Vorräte in Wald-Ökosystemen des Solling. Z. Pflanzenernähr. Bodenk. 143:232–246.

    Article  CAS  Google Scholar 

  30. Meijer, E. L., and L. van der Pias. 1980. Relative stabilities of soil minerals. Med. Lanbouwhoges, Wageningen 80–16. Agricultural University, Wageningen.

    Google Scholar 

  31. Meunier, A., B. Velde, P. Dudoignon, and D. Beaufort. 1983. Identification of weathering and hydrothermal alteration in acidic rocks: petrography and mineralogy of clay minerals. Sci. Geol. 72:93–99.

    Google Scholar 

  32. Mill, A. J. B. 1980. Colloidal and macromolecular forms of iron in natural waters. 1. A review. Environ. Tech. Lett. 1:97–108.

    Article  CAS  Google Scholar 

  33. Miller, A. R., C. D. Densmore, E. T. Degens, J. C. Hathaway, F. T. Manheim, P. F. McFarlin, R. Pocklington, and A. Jokela. 1966. Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. Cosmochim. Acta 30:341–359.

    Article  CAS  Google Scholar 

  34. Muffler, L. J. P., and D. E. White. 1969. Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, southeastern California. Geol. Soc. Am. Bull. 80: 157–182.

    Article  CAS  Google Scholar 

  35. Murad, E. 1974. Hydrothermal alteration of granitic rocks and its possible bearing on the genesis of mineral deposits in the southern Black Forest, Germany. Econ. Geol. 69:532–544.

    Article  CAS  Google Scholar 

  36. Murad, E., and U. Schwertmann. 1980. The Mossbauer spectrum of ferrihydrite and its relation to those of other iron oxides. Am. Mineral. 65:1044–1049.

    Google Scholar 

  37. Nace, R. L. 1967. Water resources: a global problem with local roots. Environ. Sci. Technol. 1:550–560.

    Article  Google Scholar 

  38. Parham, W. E. 1966. Lateral variations of clay mineral assemblages in modern and ancient sediments, p. 135–145. In L. Heller and A. Weiss (eds.) Proc. Int. Clay Conf., 1966, Jerusalem, Vol. 1. Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  39. Perel’man, A. I. 1977. Geochemistry of Elements in the Supergene Zone. Keter Publishing House, Jerusalem.

    Google Scholar 

  40. Puchelt, H., H. H. Schock, E. Schroll, and H. Hanert. 1973. Rezente marine Eisenerze auf Santorin, Griechenland. Geol. Rundschau 62: 786–812.

    Article  CAS  Google Scholar 

  41. Raymond, K. N., and C. J. Carrano. 1979. Coordination chemistry and microbial iron transport. Accounts Chem. Res. 12:183–190.

    Article  CAS  Google Scholar 

  42. Ronov, A. B., and A. A. Yaroshevsky. 1971. Chemical composition of the earth’s crust, p. 37–57. In P. J. Hart (ed.) The Earth’s Crust and Upper Mantle. American Geophysical Union, Washington, D. C.

    Google Scholar 

  43. Schott, J., and R. A. Berner. 1983. X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering. Geochim. Cosmochim. Acta 47:2233–2240.

    Article  CAS  Google Scholar 

  44. Schwertmann, U., and D. S. Fanning. 1976. Iron-manganese concretions in hydrosequences of soils in loess in Bavaria. Soil Sci. Soc. Am. J. 40:731–7J8.

    Article  CAS  Google Scholar 

  45. Shannon, R. D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32:751–767.

    Article  Google Scholar 

  46. Sibley, D. F., and J. T. Wilbrand. 1977. Chemical balance of the earth’s crust. Geochim. Cosmochim. Acta 41:545–554.

    Article  CAS  Google Scholar 

  47. Towe, K. M. 1981. Structural distinction between ferritin and irondextran (inferon). J. Biol. Chem. 256:9377–9378.

    CAS  Google Scholar 

  48. Turekian, K. K., and K. H. Wedepohl. 1961. Distribution of the elements in some major units of the earth’s crust. Geol. Soc. Am. Bull. 72:75–92.

    Google Scholar 

  49. Ure, A. M., and M. L. Berrow. 1982. The chemical constituents of soils. Environ. Chem. 2:94–204.

    Article  CAS  Google Scholar 

  50. Wedepohl, K. H. 1969. Composition and abundance of common igneous rocks, p. 227–249. In K. H. Wedepohl (ed.) Handbook of Geochemistry, Vol. 1. Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  51. White, D. E., J. D. Hem, and G. A. Waring. 1963. Chemical composition of subsurface waters. In M. Fleischer (ed.) Data of Geochemistry, Sixth Edition. Professional Paper 440-F. U.S. Geol. Survey, Washington, D. C.

    Google Scholar 

  52. Whitehouse, U. G., L. M. Jeffrey, and J. D. Debbrecht. 1960. Differential settling tendencies of clay minerals in saline waters. Clays Clay Miner. 7:1–79.

    Article  Google Scholar 

  53. Whittaker, E. J. W., and R. Mantus. 1970. Ionic radii for use in geochemistry. Geochim. Cosmochim. Acta 34:945–956.

    Article  CAS  Google Scholar 

  54. Wilson, M. J., and V. C. Farmer. 1970. A study of weathering in a soil derived from a biotite-hornblende rock. II. The weathering of hornblende. Clay Miner. 8:435–444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Murad, E., Fischer, W.R. (1988). The Geobiochemical Cycle of Iron. In: Stucki, J.W., Goodman, B.A., Schwertmann, U. (eds) Iron in Soils and Clay Minerals. NATO ASI Series, vol 217. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4007-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4007-9_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8278-5

  • Online ISBN: 978-94-009-4007-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics