An Expert Model Selection Approach to Determine the “Best” Pattern Structure in Factor Analysis Models

  • Hamparsum Bozdogan
  • Donald E. Ramirez
Part of the Theory and Decision Library book series (TDLB, volume 8)


This paper introduces and develops an expert data-analytic model selection approach based on Akaike’s Information Criterion (AIC) and asymptotically Consistent Akaike’s Information Criterion (CAIC), to choose the number of factors, m, and to determine the “best” factor pattern structure among all possible patterns under the orthogonal factor model using Mallows’ Cp Criterion.

A subset selection procedure is carried out using a “leaps and bounds” algorithm to interpret the complex interrelationships between the best fitting number of factors and the original variables.

The new approach presented in this paper tries to unify both the exploratory and confirmatory factor analysis to find “the best fitting simple structure for the best m-factor model” in one expert statistical system.

Numerical examples are provided to show how to achieve flexibility in modeling and to demonstrate the efficiency of this procedure.

Key words and phrases

Model Selection Criteria, AIC, CAIC and Mallows’ Cp Choosing the Number of Factors Determining the Pattern Structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, H. (1973). ‘Information Theory and an Extension of the Maximum Likelihood Principle.’ In B. N. Petrov and F. Csaki (eds.). Second International Symposium on Information Theory. Academiai Kiado: Budapest, 267–281.Google Scholar
  2. Akaike, H. (1974). ‘A New Look at the Statistical Model Identification.’ IEEE Transactions on Automatic Control, AC-19, 716–723.MathSciNetCrossRefGoogle Scholar
  3. Akaike, H. (1977). ‘On Entropy Maximization Principle.’ In P. R. Krishnaiah (ed.), Proc. Symposium on Applications of Statistics, North-Holland, Amsterdam, 27–47.Google Scholar
  4. Anderson, T. W. and Rubin, H. (1956). ‘Statistical Inference in Factor Analysis.’ In Proc. of the Third Berkeley Symposium on Mathematical Statistics and Probability. 5, 111–150.Google Scholar
  5. Bartlett, M. S. (1937). ‘The Statistical Conception of Mental Factors.’ The British Journal of Psychology, 28, 97–104.Google Scholar
  6. Bartlett, M. S. (1938). ‘Methods of Estimating Mental Factors.’ Nature. 141, 609–610.Google Scholar
  7. Bozdogan, H. (1987). ‘Model Selection and Akaike’s Information Criterion (AIC): the General Theory and its Analytical Extensions.’ Psvchometrika (to appear).Google Scholar
  8. Bozdogan, H. and Ramirez, D. E. (1987a). ‘Model Selection Approach to the Factor Model Problem, Parameter Parsimony, and Choosing the Number of Factors.’ Annals of the Institute of Statistical Mathematics, Paper B (to appear).Google Scholar
  9. Bozdogan, H. and Ramirez, D. E. (1987b). ‘FACAIC: Model Selection Algorithm for the Orthogonal Factor Model Using AIC and CAIC.’ Psvchometrika: Computational Psychometrics Section (to appear).Google Scholar
  10. Bozdogan, H. and Ramirez, D. E. (1987c). ‘Factor Pattern Structure for Orthogonal Factor Analysis Model Using FSCORE.’ Technical Paper No. 17 in Statistics, Department of Mathematics, University of Virginia, Charlottesville, VA 22903.Google Scholar
  11. Everitt, B. S. (1984). An Introduction to Latent Variable Models. London: Chapman and Hall.zbMATHGoogle Scholar
  12. Furnival, G. M. and Wilson, R. W. (1974). ‘Regressions by Leaps and Bounds.’ Technometrics, 16, 499–511.zbMATHCrossRefGoogle Scholar
  13. Harris, C. W. (1967). ‘On Factors and Factor Scores.’ Psychometrika, 32, 363–379.CrossRefGoogle Scholar
  14. Haywood, H. B. (1931). ‘On Finite Sequences of Real Numbers.’ Proc. of the Royal Society, Series A. 134, 486–501.CrossRefGoogle Scholar
  15. Johnson, R. A. and Wichern, D. W. (1982). Applied Multivariate Statistical Analysis. Englewood Cliffs: Prentice-Hall.zbMATHGoogle Scholar
  16. Jöreskog, K. G. (1978). ‘Structural Analysis of Covariance and Correlation Matrices.’ Psychometrika, 4, 443–477.CrossRefGoogle Scholar
  17. Jöreskog, K. G. (1979). Advances in Factor Analysis and Structural Equation Models. Cambridge: Abt Books.zbMATHGoogle Scholar
  18. Jöreskog, K. G. and Sörbom, D. (1981). LISREL V, Analysis of Linear Relationships by Maximum Likelihood and Least Squares Methods. Uppsala, Sweden: University of Uppsala.Google Scholar
  19. Kaiser, H. F. (1958). ‘The Varimax Criterion for Analytic Rotation in Factor Analysis.’ Psychometrika. 23, 187–200.zbMATHCrossRefGoogle Scholar
  20. Lawley, D. N. (1958). ‘Estimation in Factor Analysis Under Various Initial Assumptions.’ British Journal of Statistical Psychology, 11, 1–12.CrossRefGoogle Scholar
  21. Lawley, D. N. and Maxwell, A. E. (1971). Factor Analysis as a Statistical Method. New York: American Elsevier.zbMATHGoogle Scholar
  22. Lord, F. M. (1956). ‘A Study of Speed Factors in Tests and Academic Grades.’ Psychometrika, 21, 31–50.CrossRefGoogle Scholar
  23. Lord, F. M. and Novick, M. R. (1968). Statistical Theories of Mental Test Scores. Reading: Addison-Wesley.zbMATHGoogle Scholar
  24. Mallows, C. L. (1973). ‘Some Comments on Cp.’ Technometrics, 15, 661–675.zbMATHCrossRefGoogle Scholar
  25. Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. New York: Academic Press.zbMATHGoogle Scholar
  26. Mulaik, S. A. (1972). The Foundations of Factor Analysis. New York: McGraw Hill.Google Scholar
  27. McDonald, R. P. (1962). ‘A General Approach to Nonlinear Factor Analysis.’ Psychometrika, 27, 397–415.MathSciNetCrossRefGoogle Scholar
  28. McDonald, R. P. (1967). ‘Numerical Methods for Polynomial Models in Nonlinear Factor Analysis.’ Psychometrika. 32, 77–112.MathSciNetCrossRefGoogle Scholar
  29. McDonald, R. P. and Burr, E. J. (1967). ‘A Comparison of Four Methods of Constructing Factor Scores.’ Psychometrika. 32, 381–401.zbMATHCrossRefGoogle Scholar
  30. Seber, G. A. F. (1984). Multivariate Observations. New York: John Wiley and Sons.zbMATHCrossRefGoogle Scholar
  31. Tumura, T. and Sato, M. (1981a). ‘On the Convergence of Iterative Procedures in Factor Analysis.’ TRU Mathematics 17–1, 159–168.MathSciNetGoogle Scholar
  32. Tumura, T. and Sato, M. (1981b). ‘On the Convergence of Iterative Procedures in Factor Analysis (II).’ TRU Mathematics 17–2, 255–271.MathSciNetGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Hamparsum Bozdogan
    • 1
  • Donald E. Ramirez
    • 1
  1. 1.Department of Mathematics Math/Astronomy BuildingUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations