Advertisement

On the Application of AIC to Bivariate Density Estimation, Nonparametric Regression and Discrimination

  • Taskin Atilgan
  • Tom Leonard
Part of the Theory and Decision Library book series (TDLB, volume 8)

Abstract

Some simple data analytic procedures are available for bivariate nonparametric density estimation. If we use a linear approximation of specified basis functions then the coefficients can be estimated by the EM algorithm, and the number of terms judged by Akaike’s information criterion. The method also yields readily compatible approaches to nonparametric regression and logistic discrimination. Tukey’s energy consumption data and a psychological test for 25 normal and 25 psychotic patients are re-analyzed and the current methodology compared with previous procedures. The procedures offer many possible applications in the biomedical area, which are discussed in Sections 5 and 6, e.g. it is possible to analyze noisy data sets in situations where structured regression techniques would typically fail.

Keywords

AIC Roughness parameter Bias Variance Tradeoff 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H. (1974). ‘A New Look at the Statistical Model Identification.’ I.E.E.E. Transactions on Automatic Control, AC-19, 716–712.MathSciNetCrossRefGoogle Scholar
  2. Anderson, J. R. (1972). ‘Separate sample logistic discrimination.’ Biometrika 59, 19–35.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Anderson, J. R. (1975). ‘Quadratic logistic discrimination.’ Biometrika 62, 149–154.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Atilgan, T. (1983). ‘Parameter Parsimony Model Selection, and Smooth Density Estimation.’ Ph.D. Thesis Department of Statistics, University of Wisconsin-Madison.Google Scholar
  5. Atilgan, T. (1984). ‘Determination of the Dimension of an Approximation for Fitting a Given Data Set.’ Tech. Rep. No. 741 Department of Statistics, University of Wisconsin, Madison.Google Scholar
  6. Dempster, A. P., Laird, N. H. and Rubin, D. B. (1978). ‘Maximum Likelihood Incomplete Data via the EM Algorithm.’ J.R.S.S., Series B, 39:1–38.MathSciNetGoogle Scholar
  7. Fisher, R. A. (1938). ‘The statistical utilization of multiple measurements.’ Annals of Eugenics 8:376–386.CrossRefGoogle Scholar
  8. Habema, J. D. F., Hermans, J. and Van den Broek, K. (1974). ‘A Stepwise Discriminant Analysis Program Using Density Estimation.’ In: COMPSTAT 1974, Proceedings in Computational Statistics. (G. Bruckman, ed.) Physica Verlag, Wien.Google Scholar
  9. Kullback, S. and Leibler, R. A. (1951). ‘On information and sufficiency.’ Annals of Mathematical Statistics, 22, 79–86.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Smith, C. A. B. (1947). ‘Some examples of Discrimination.’ Annals of Eugenics, 13:272–282.CrossRefGoogle Scholar
  11. Tukey, J. W. (1977). ‘Exploratory Data Analysis.’ Addison-Wesley.zbMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Taskin Atilgan
    • 1
  • Tom Leonard
    • 2
  1. 1.Department of StatisticsTexas A&M UniversityCollege StationUSA
  2. 2.Department of StatisticsUniversity of WisconsinMadisonUSA

Personalised recommendations