Skip to main content

Modeling the Transport of Chemically Active Constituents in the Stratosphere

  • Chapter
Transport Processes in the Middle Atmosphere

Part of the book series: NATO ASI Series ((ASIC,volume 213))

Abstract

A three-dimensional, spectral, primitive equation, atmospheric model incorporating comprehensive chemistry has been used to study dynamics and transport processes and to simulate the distribution of ozone and other trace constituents in the stratosphere. Preliminary results from a simulation of the seasonally varying evolution of several important constituents are presented. Comparisons of simulated species distributions with data obtained from satellite experiments demonstrate good agreement in many instances. Of particular interest is the occurrence of incursions or tongues of ozone-rich air parcels from lower latitudes into the polar cap region associated with the displaced polar vortex during a mid-winter stratospheric warming. During the period of enhanced dynamical activity, the model successfully simulates many aspects of observed ozone behavior as well as features described as wave-breaking and irreversible mixing observed in isentropic distributions of potential vorticity inferred from satellite temperature data. Examination of the evolving constituent distributions suggests that episodic transport of ozone into the polar region during wave-breaking events culminates with the production of a high-latitude, spring maximum in total column ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackshear, W. T., W. L. Grose, and R. E. Turner, 1987; ‘Simulated sudden stratospheric warming: Synoptic evolution’ Quart J. Roy Meteor Soc., 113, in press.

    Google Scholar 

  • Blake, D., and R. Lindzen, 1973: ‘Effect of photochemical models on calculated equilibria and cooling rates in the stratosphere’ Mon. Wea Rev, 101, 783–802

    Article  Google Scholar 

  • Brasseur, G, and S Solomon, 1984: Aeronomy of the Middle Atmosphere D. Reidel and Co, Dordrecht, Holland

    Google Scholar 

  • Clough, S. A., N. S. Grahame, and A O’Neill, 1985: ‘Potential vorticity in the stratosphere derived using data from satellites’ Quart J Roy Met Soc, 111, 335–358

    Article  Google Scholar 

  • DeMore, W. B., J. J Margitan, M. J. Molina, R. T. Watson, D. M. Golden, R. F. Hampson, M. J. Kurylo, C J Howard, and A. R Ravishankara, 1985: Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation Number 7 JPL publication 85–37, 226 pp, Jet Propulsion Lab, Pasadena, CA.

    Google Scholar 

  • Dunkerton, T. J, and D. P Delisi, 1986: ‘Evolution of potential vorticity in the winter stratosphere of January-February 1979’ J Geophys. Res, 91, 1199–1208

    Article  Google Scholar 

  • Dutsch, H. U., 1969: Atmospheric Ozone and Ultraviolet Radiation World Survey of Climatology, 4, Climate of the Free Atmosphere, Elsevier, 383–432

    Google Scholar 

  • Eliasen, E., B Machenaver, and E. Rasmussen, 1970: On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields.1 Univ« of Copenhagen, Institute of Theoretical Meteorology, Report No 2

    Google Scholar 

  • Garcia, R., and S. Solomon, 1983: ‘A numerical model of the zonally averaged dynamical and chemical structure of the middle atmosphere’ J Geophys. Res, 88, 1379–1400.

    Article  Google Scholar 

  • Gates, W. L., and A. B. Nelson, 1975: ‘A new (revised) tabulation of the Scripps topography on a one degree global grid Part I. Terrain heights’ The Rand Corp., R-1276-1-ARPH, Santa Monica, CA.

    Google Scholar 

  • Geller, M. A., M. F. Wu, and M. E. Gelman, 1984: ‘Troposphere- stratosphere (surface - 55 km) monthly winter general circulation statistics for the northern hemisphere–interannual variations’ J. Atmos. Sci., 41, 1726–1744

    Article  Google Scholar 

  • Gille, J. C. and J. M. Russell III, 1984: ‘The Limb Infrared Monitor of the Stratosphere experiment description, performance, and results’ J. Geophys. Res., 89, 5125–5140

    Article  Google Scholar 

  • Grose, W. L., 1984: ‘Recent advances in understanding stratospheric dynamics and transport processes: Application of satellite data to their interpretation.’ Adv. Space Res., 4 19–28.

    Article  Google Scholar 

  • Grose, W. L., W. T. Blackshear, and R. E. Turner, 1984: ‘The response of a non-linear, time-dependent, baroclinic model of the atmosphere to tropical thermal forcing.’ Quart. J. Roy. Meteor. Soc., 110» 981- 1002.

    Google Scholar 

  • Grose, W. L., J. E. Nealy, and R. E. Turner, 1987: ‘Modeling stratospheric transport processes’ American Meteorological Society Sixth Conference on the Dynamics and Chemistry of the Middle Atmosphere, Baltimore, Maryland.

    Google Scholar 

  • Hoskins, B. J., and A. J. Simmons, 1975: ‘A multi-layer spectral model and the semi-implicit method.’ Quart. J. Roy. Meteor. Soc., 101 637–655.

    Article  Google Scholar 

  • Hoskins, B. J., M. E. Mclntyre, and A. W. Robertson, 1985: ‘On the use and significance of isentropic potential vorticity maps’ Quart. J. Roy. Met. Soc., Ill, 877–946.

    Google Scholar 

  • Kurzeja, R. J., 1975: ‘The diurnal variation of minor constituents in the stratosphere and its effect on the ozone concentration’ J. Atmos. Sci., 32, 899–909.

    Article  Google Scholar 

  • Labitzke, K., 1981: ‘The amplification of height wave 1 in January 1979: A characteristic precondition for the major warming in February’ Mon. Wea. Rev., 109, 989–989.

    Article  Google Scholar 

  • Lacis, A. A., and J. Hansen, 1974: ‘A parameterization for the absorption of solar radiation in the Earth’s atmosphere.’ J. Atmos. Sci., 31, 118–133.

    Article  Google Scholar 

  • Leovy, C. B., C.-R. Sun, M. H. Hitchman, E. E. Remsberg, J. M. Russell III, L. L. Gordley, J. C. Gille, and L. V. Lyjak, 1985: ‘Transport of ozone in the middle stratosphere: Evidence for planetary wave breaking’ J. Atmos. Sci., 42, 230–244.

    Article  Google Scholar 

  • Mahlman, J. D., and W. J. Moxim, 1978. ‘Tracer simulation using a global general circulation model: Results from a mid-latitude instantaneous source experiment’ J. Atmos. Sci., 35, 1340–1374.

    Article  Google Scholar 

  • Mahlman, J. D., H. Levy II, and W. J. Moxim, 1980: ‘Three-dimensional tracer structure and behavior as simulated in two ozone precursor experiments’ J Atmos. Sci., 37, 655–685

    Article  Google Scholar 

  • Mahlman, J. D., D. G. Andrews, H. U. Dutsch, D. L. Hartmann, T. Matsuno, and R. J« Murgatroyd, 1984: ‘Transport of trace constituents in the atmosphere’, Dynamics of the Middle Atmosphere, D. Reidel and Co., Dordrecht, Holland, 387 - 416.

    Google Scholar 

  • Mclntyre, M. E. and T. N. Palmer, 1983: ‘Breaking waves in the stratosphere’ Nature, 305» 593–600.

    Google Scholar 

  • Mclntyre, M. E. and T. N. Palmer, 1984: ‘The ‘surf zone’ in the stratosphere’ J. Atmos. Terr. Phys., 46, 825–850.

    Article  Google Scholar 

  • Orszag, S. A., 1970: ‘Transform method for calculation of vector coupled sums: Application to the spectral form of the vorticity equation’ J. Atmos. Sci., 27 890–895.

    Article  Google Scholar 

  • Phillips, N. A., 1957: ‘A coordinate system having some special advantages for numerical forecasting’, J. Met., 14 184–185.

    Article  Google Scholar 

  • Robert, A. J. S. J. Henderson, and C. Turnbull, 1972: ‘An implicit time integration scheme for baroclinic modes of the atmosphere’ Mon. Wea. Rev., 100, 329–335.

    Google Scholar 

  • Russell, J. M. Ill, 1986: ‘Middle atmosphere composition revealed by satellite data’ MAP Handbook, 22 University of Illinois, Urbana, IL 61801.

    Google Scholar 

  • World Meteorological Organization, 1986: ‘Atmospheric Ozone 1985: Global Ozone Research and Monitoring Project Report No. 16 cursor experiments’ J. Atmos. Sci., 37, 655–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holand.

About this chapter

Cite this chapter

Grose, W.L., Nealy, J.E., Turner, R.E., Blackshear, W.T. (1987). Modeling the Transport of Chemically Active Constituents in the Stratosphere. In: Visconti, G., Garcia, R. (eds) Transport Processes in the Middle Atmosphere. NATO ASI Series, vol 213. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3973-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3973-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8262-4

  • Online ISBN: 978-94-009-3973-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics