Skip to main content

A Class of Non-Parametrically Constructed Parameter Estimators for a Stationary Autoregressive Model

  • Chapter
Mathematical Statistics and Probability Theory

Abstract

This article presents a new class of estimators for the parameters θt= (θ1,…,θq) of the stationary autoregressive model \({\text{AR }}\left( {\text{q}} \right),{{\text{x}}_{\text{t}}}{\text{ = }}\mathop \Sigma \limits_{{\text{i = 1}}}^{\text{q}} {{\text{0}}_{\text{i}}}{{\text{x}}_{{\text{t - i}}}}{\text{ + }}{\varepsilon _{\text{t}}},\) with \({\text{E}}\left| {{{\text{X}}_{\text{t}}}} \right| = \,0,\,{\text{E}}\left[ {{\varepsilon _{\text{t}}}} \right] = 0\) and \(\left( {{\varepsilon _t}} \right){\text{ }} = {\text{ }}{\sigma ^2}\). The new estimators are obtained by minimizing the functional

$$\hat \psi {\mkern 1mu} \left( \theta \right){\mkern 1mu} = \int {\left( {{{\hat \alpha }_n}{\mkern 1mu} \left( {\vec x} \right){\mkern 1mu} - {\mkern 1mu} {{\vec x}^t}{\mkern 1mu} \theta } \right)} {{\mkern 1mu} ^2}{\mkern 1mu} {\hat f_n}{\mkern 1mu} \left( {\vec x} \right){\mkern 1mu} d\vec x$$

where \({\hat \alpha _n}\,and\,{\hat f_n}\) are respectively non-parametric estimators of the prediction function \(\alpha \left( {\vec x} \right){\text{ }} = {\text{ }}\alpha \left( {{x_1},...,{x_q}} \right){\text{ }} = {\text{ }}E\left[ {{X_t}/{X_{t{\text{ }} - {\text{ }}1}}{\text{ }} = {\text{ }}{x_1},...,{x_{t{\text{ }} - {\text{ }}q}}{\text{ }} = {\text{ }}{x_q}} \right]{\text{ }} = {\text{ }}{\theta ^t}\vec x\) and of f, the stationary initial density of (X1,…,Xq). Consistency and asymptotic normality properties are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bierens, H.J. (1983). Uniform consistency of kernel estimators of a regression function under generalized conditions. J. Amer. Statist. Assoc. 78, 699–707.

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures. New York. John Wiley.

    Google Scholar 

  • Bosq, D. (1983). Non Parametric Prediction in Stationary Processes. Lecture Notes in Statistics 16, 69–84.

    Article  Google Scholar 

  • Collomb, G. (1982). Prédiction non paramétrique: étude de l’erreur quadratique du prédictogramme. C.R. Acad. Sc. Paris, t. 294, 59–62.

    MathSciNet  MATH  Google Scholar 

  • Collomb, G. and Doukhan, P. (1983). Estimation non paramétrique de Ja fonction d’autorégression d’un processus stationnaire et ϕ-mélangeant: risques quadratiques pour le méthode du noyau. C.R. Acad. Sc. Paris, t. 296, 859–862.

    MathSciNet  MATH  Google Scholar 

  • Collomb, G. and Hardle, W. (1 986). Strong uniform convergence rates in robust nonparametric time series analysis and prediction: kernel regression estimation from dependent observations. Theory of Probability and its Applications. (To appear).

    Google Scholar 

  • Cristobal, J.A., Faraldo, P. and Gonzalez Manteiga, W. (1986). A class of linear regression parameter estimators constructed by nonparametric estimation. ( To appear in Ann. of Stat.).

    Google Scholar 

  • Faraldo, P. and Gonzalez Manteiga, W. (1986). On efficiency of a new class of linear regression estimates obtained by preliminary non-parametric estimation. New Perspectives in Theoretical and Applied Statistics. Puri. M. et al., Eds. John Wiley. (To appear).

    Google Scholar 

  • Fuller, W. (1976). Introduction to statistical time series. New York. John Wiley.

    Google Scholar 

  • Hart. J.D. (1984). Efficiency of a kernel Density Estimator Under an Autoregressive Dependence Model. J. Amer. Statist. Assoc. 79, 111–117.

    Google Scholar 

  • Masry, E. (1983). Probability Density Estimation from Sampled Data. I.E.E.E. Transact, on Inform. Theory. 29. 696–709.

    Article  MathSciNet  MATH  Google Scholar 

  • Titteringtton, D.M. (1985). Common structure of smoothing techniques in Statistics. Inter. Stat. Review. 53, 14 1–17 0.

    Google Scholar 

  • Stute, W. and Schumann, G. (1980). A general Glivenko-Cantelli Theorem for Stationary Sequences of Random Observations. Scand. J. Statist. 7, 102–104.

    MathSciNet  MATH  Google Scholar 

  • Yakowitz, S.J. (1985). Nonparametrie Density Estimation, Prediction and Regression for Markov Sequences. J. Amer. Statist. Assoc. 80, 215–221.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Manteiga, W.G., Fernández, J.M.V. (1987). A Class of Non-Parametrically Constructed Parameter Estimators for a Stationary Autoregressive Model. In: Bauer, P., Konecny, F., Wertz, W. (eds) Mathematical Statistics and Probability Theory. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3965-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3965-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8259-4

  • Online ISBN: 978-94-009-3965-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics