Skip to main content

State Spaces and Initial Estimates in Minimum Relative-Entropy Inversion with Application to Spectrum Analysis and Image Enhancement

  • Conference paper
Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 21))

Abstract

The principles of maximum entropy (ME) and minimum relative entropy (MRE) are information-theoretic methods for estimating unknown probability distributions based on information about their expected values [Elsasser, 1937; Jaynes, 1957; Kullback, 1959; Csiszár, 1975; Shore and Johnson, 1980]. MRE differs from ME by taking into account an initial estimate of the unknown distribution. Both ME and MRE are used in a variety of successful applications, but widespread use has been hindered by some unresolved issues. One issue is the choice of state space in which to express problems and their solutions. Another issue is the choice and interpretation of initial estimates for MRE. A third issue is the identity of the “correct” expression to use for entropy when ME is applied to spectrum analysis and image enhancement. This paper shows that these issues are interrelated, and presents results that help to resolve them.

The full version of this paper has been submitted to the IEEE Transactions on Information Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abies, J. G. (1974), “Maximum entropy spectral analysis” Astron. Astro-phys. Supp. 15, pp. 383–393.

    Google Scholar 

  • Burg, J. P. (1967), “Maximum Entropy Spectral Analysis,” presented at the 37th Annual Meeting, Society of Exploration Geophysicists, Oklahoma City, Okla.

    Google Scholar 

  • Burg, J. P. (1975), “Maximum Entropy Spectral Analysis,” Ph.D. Dissertation, Stanford University, Stanford, Calif. (University Microfilms No. AAD75–25, 499 ).

    Google Scholar 

  • Csiszar, I. (1975), “I-divergence geometry of probability distributions and minimization problems,” Ann. Prob. 3, pp. 146–158.

    Article  MATH  Google Scholar 

  • Elsasser, W. M. (1937), “On quantum measurements and the role of the uncertainty relations in statistical mechanics,” Phys. Rev. 52, pp. 987–999.

    Article  MATH  Google Scholar 

  • Frieden, B. R. (1972), “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, pp. 511–518.

    Article  Google Scholar 

  • Frieden, B. R. (1980), “Statistical models for the image restoration problem,” Comp. Graphics Image Processing 12, pp. 40–59.

    Article  Google Scholar 

  • Gordon, R., and G. T. Herman (1971), “Reconstruction of pictures from their projections,” Quart. Bull. Center for Theor. Biol. 4, pp. 71–151.

    Google Scholar 

  • Gray, R. M., A. H. Gray, Jr., G. Rebolledo, and J. E. Shore (1981), “Rate-distortion speech coding with a minimum discrimination information distortion measure,” IEEE Trans. Inf. Theory IT-27, pp. 708–721.

    Article  Google Scholar 

  • Gull, S. F., and G. J. Daniell (1978), “Image reconstruction from incomplete and noisy data,” Nature 272, pp. 686–690.

    Article  Google Scholar 

  • Jaynes, E. T. (1957), “Information theory and statistical mechanics I,” Phys. Rev. 106, pp. 620–630.

    Article  MathSciNet  Google Scholar 

  • Kay, S. M., and S. L. Marple, Jr. (1981), “Spectrum analysis—a modern perspective,” Proc. IEEE 69, pp. 1380–1419.

    Article  Google Scholar 

  • Kullback, S. (1959), Information Theory and Statistics, Wiley, New York ( Dover, New York, 1968 ).

    MATH  Google Scholar 

  • Lacoss, R. T. (1971), “Data adaptive spectral analysis methods,” Geophys. 36, pp. 661–675.

    Article  Google Scholar 

  • Markel, J. D, and A. H. Gray, Jr. (1976), Linear Prediction of Speech, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Nadeu, C., E. Sanvicente, and M. Bertran (1981), “A new algorithm for spectral estimation,” Proc. International Conf. on DSP, pp. 463–470.

    Google Scholar 

  • Ortigueira, M. D., R. Garcia-Gomez, and J. M. Tribolet (1981), “An iterative algorithm for maximum flatness spectral analysis,” Proc. International Conf. on DSP, pp. 810–818.

    Google Scholar 

  • Papoulis, A. (1981), “Maximum entropy and spectral estimation: a review,” IEEE Trans. Acoust., Speech, Sig. Processing ASSP-29, pp. 1176–1186.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, E. A. (1982), “A historical perspective of spectrum estimation,” Proc. IEEE 76, pp. 885–907.

    Article  Google Scholar 

  • Shore, J. E. (1981), “Minimum cross-entropy spectral analysis,” IEEE Trans. Acoust, Speech, Sig. Processing ASSP-29, pp. 230–237.

    Article  MathSciNet  MATH  Google Scholar 

  • Shore, J. E., and R. W. Johnson (1980), “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory IT-26, pp. 26–37. (See also comments and corrections in IEEE Trans. Inf. Theory IT-29, p. 942, 1983.)

    Article  MathSciNet  MATH  Google Scholar 

  • Shore, J. E., and R. W. Johnson (1984), “Which is the better entropy expression for speech processing: -S log S or log S?” IEEE Trans. Acoust., Speech, Sig. Processing ASSP-32, pp. 129–137.

    Google Scholar 

  • Skilling, J., and S. F. Gull (1985), “Algorithms and applications,” in Maximum-Entropy and Bayesian Methods in Inverse Problems, C. Ray Smith and W. T. Grandy, eds., D. Reidel, Dordrecht, pp. 83–132.

    Google Scholar 

  • Smylie, D. E., G. K. C. Clarke, and T. J. Ulrych (1973), “Analysis of irregularities in the earth’s rotation,” Meth. Comp. Phys. 13, pp. 391–431.

    Google Scholar 

  • Ulrych, T. J., and T. N. Bishop (1975), “Maximum entropy spectral analysis and autoregressive decomposition,” Rev. Geophys. Space Phys. 43, pp. 183–200.

    Article  Google Scholar 

  • VanDenBos, A. (1971), “Alternative interpretation of maximum entropy spectral analysis,” IEEE Trans. Inf. Theory IT-17, pp. 493–494.

    Article  Google Scholar 

  • Wernecke, S. J. (1977), “Two-dimensional maximum entropy reconstruction of radio brightness,” Radio Sci. 12, pp. 831–844.

    Article  Google Scholar 

  • Wernecke, S. J., and L. D’Addario (1977), “Maximum entropy image reconstruction,” IEEE Trans. Computers C-26, pp. 351–364.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this paper

Cite this paper

Shore, J.E. (1987). State Spaces and Initial Estimates in Minimum Relative-Entropy Inversion with Application to Spectrum Analysis and Image Enhancement. In: Smith, C.R., Erickson, G.J. (eds) Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. Fundamental Theories of Physics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3961-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3961-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8257-0

  • Online ISBN: 978-94-009-3961-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics