Skip to main content

Maximum Entropy in Structural Molecular Biology: The Fiber Diffraction Phase Problem

  • Conference paper

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 21))

Abstract

The maximum entropy method of image processing is applied to the problem of calculating a map of electron density from its x-ray fiber diffraction pattern. Native and heavy atom derivative data, although insufficient for the usual multiple isomorphous replacement method, are used in combination with a constraint on the maximum particle radius, and with a constraint on the maximum electron density enforced by a “Fermi-Dirac” form of entropy. The problem is illustrated by application to the filamentous bacterial virus Pf1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abies, J. G. (1974), “Maximum entropy spectral analysis,” Astron. Astrophys. Suppl. Ser. 15, pp. 383–393.

    Google Scholar 

  • Blow, D. M., and F. H. C. Crick (1959), “The treatment of errors in the isomorphous replacement method,” Acta Crystallogr. 12, pp. 794–802.

    Article  Google Scholar 

  • Blundell, T. L., and L. N. Johnson (1976), Protein Crystallography, Academic Press, New York.

    Google Scholar 

  • Bricogne, G. (1984), “Maximum entropy and the foundations of direct methods,” Acta Crystallogr. A40, pp. 410–445.

    Google Scholar 

  • Bryan, R. K. (1980), “Maximum entropy image processing,” Ph.D. thesis, University of Cambridge.

    Google Scholar 

  • Bryan, R. K., M. Bansal, W. Folkhard, C. Nave, and D. A. Marvin (1983), “Maximum entropy calculation of the electron density at 4 Å resolution of Pf1 filamentous bacteriophage,” Proc. Nat. Acad. Sci. USA 80, pp. 4728–4731.

    Article  Google Scholar 

  • Bryan, R. K., and J. Skilling (1980), “Deconvolution by maximum entropy as illustrated by application to the jet of M87,” Mon. Not. R. Astron. Soc. 191, pp. 69–79.

    Google Scholar 

  • Burch, S. F., S. F. Gull, and J. Skilling (1983), “Image restoration by a powerful maximum entropy method,” Computer Vision, Graphics, and Image Processing 23, pp. 113–128.

    Article  Google Scholar 

  • Collins, D. M. (1982), “Electron density images from imperfect data by iterative entropy maximization,” Nature 254, pp. 49–51.

    Article  Google Scholar 

  • Deas, H. D. (1952), “The diffraction of x-rays by a random assemblage of molecules having partial alignment,” Acta Crystallogr. 5, pp. 542–546.

    Article  Google Scholar 

  • Denhardt, D. T., D. Dressier, and D. S. Ray, eds. (1978), The Single- Stranded DNA Phages, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • DuBow, M. S., ed. (1981), Bacteriophage Assembly, Liss, New York.

    Google Scholar 

  • Franklin, R. E., and K. C. Holmes (1958), Tobacco mosaic virus: application of method of isomorphous replacement to the determination of the helical parameters and radial density distribution, Acta Crystallogr. 11, pp. 213–220.

    Article  Google Scholar 

  • Fraser, R. D. B., T. P. Macrae, A. Miller, and R. J. Rowlands (1976), “Digital processing of fibre diffraction patterns” J. Appl. Crystallogr. 9, pp. 81–94.

    Article  Google Scholar 

  • Frieden, B. R. (1972), “Restoring with maximum likelihood and maximum entropy,” J. Opt. Soc. Am. 62, pp. 511–518.

    Article  Google Scholar 

  • Frieden, B. R. (1973), “The entropy expression for bounded scenes,” IEEE Trans. Inf. Theory IT-19, pp. 118–119.

    Article  Google Scholar 

  • Gull, S. F., and G. J. Daniell (1978), “Image reconstruction from incomplete and noisy data,” Nature 272, pp. 686–690.

    Article  Google Scholar 

  • Gull, S. F., and J. Skilling (1984), “The maximum entropy method,” in Indirect Imaging, J. A. Roberts, ed., Cambridge University Press, pp. 267–279.

    Google Scholar 

  • Harker, D. (1956), “The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement,” Acta Crystallogr. 9, pp. 1–9.

    Article  Google Scholar 

  • Holmes, K. C. (1982), “The structure and assembly of simple viruses,” in Structural Molecular Biology, D. B. Davis, W. Saenger, and S. S. Danyluk, eds., Plenum, New York, pp. 475–505.

    Google Scholar 

  • Holmes, K. C., and J. Barrington Leigh (1974), “The effect of disorientation on the intensity distribution of non-crystalline fibres. I. Theory,” Acta Crystallogr. A30, pp. 635–638.

    Google Scholar 

  • Holmes, K. C., E. Mandelkow, and J. Barrington Leigh (1972), “The determination of the heavy atom positions in tobacco mosaic virus from double heavy atom derivatives,” Naturwissenshaften 6, pp. 247–254.

    Article  Google Scholar 

  • Johnson, R. W., and J. E. Shore (1983), “Axiomatic derivation of maximum entropy and the principle of minimum cross-entropy-comments and corrections,” IEEE Trans. Inf. Theory lT-29, pp. 942–943.

    Article  MathSciNet  MATH  Google Scholar 

  • Kemp, M. C. (1980), “Maximum entropy reconstructions in emission tomography,” Medical Radionuclide Imaging 1, pp. 313–323.

    Google Scholar 

  • Klug, A., F. H. C. Crick, and H. W. Wyckoff (1958), “Diffraction by helical structures,” Acta Crystallogr. 11, pp. 199–213.

    Article  Google Scholar 

  • Makowski, L., D. L. D. Casper, and D. A. Marvin (1980), “Filamentous bacteriophage Pf1 structure determined at 7 Å resolution by refinement of models for the α-helical subunit,” J. Mol. Biol. 140, pp. 149–181.

    Article  Google Scholar 

  • Marvin, D. A. (1978), “Structure of the filamentous phage virion,” in The Single-Stranded NDA Phages, D. T. Denhardt, D. Dressier, and D. S. Ray, eds., Cold Spring Harbor Laboratory, N.Y., pp. 583–603.

    Google Scholar 

  • Marvin, D. A., and C. Nave (1982), “X-ray fibre diffraction,” in Structural Molecular Biology, D. B. Davis, W. Saenger, and S. S. Danyluk, eds., Plenum, New York, pp. 3–44.

    Google Scholar 

  • Marvin, D. A., and E. J. Wachtel (1975), “Structure and assembly of filamentous bacterial viruses,” Nature 253, pp. 19–23.

    Article  Google Scholar 

  • Marvin, D. A., R. L. Wiseman, and E. J. Wachtel (1974), “Filamentous bacterial viruses. XI. Molecular architecture of the class II (Pf1, Xf) virion” J. Mol. Biol. 82, pp. 121–138.

    Article  Google Scholar 

  • Minerbo, G. (1979), “MENT: a maximum entropy algorithm for reconstructing a source from projection data,” Computer Graphics and Image Processing 10, pp. 48–68.

    Article  Google Scholar 

  • Nave, C., R. S. Brown, A. G. Fowler, J. E. Ladner, D. A. Marvin, S. W. Provencher, A. Tsugita, J. Armstrong, and R. N. Perham (1981), “Pf1 filamentous bacterial virus. X-ray fibre diffraction analysis of two heavy atom derivatives,” J. Mol. Biol. 149, pp. 675–707.

    Article  Google Scholar 

  • Nave, C, A. G. Fowler, S. Malsey, D. A. Marvin, and H. Siegrist (1979), “Macromolecular structural transitions in Pf1 filamentous bacterial virus,” Nature 281, pp. 232–234.

    Article  Google Scholar 

  • Provencher, S. W., and J. Gloeckner (1982), “Rapid analytic approximations for disorientation integrals in fiber diffraction,” J. Appl. Crystallogr. 15, pp. 132–135.

    Article  Google Scholar 

  • Shore, J. E., and R. W. Johnson (1980), “Axiomatic derivation of maximum entropy and the principle of minimum cross-entropy,” IEEE Trans. Inf. Theory IT-26, pp. 26–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Siegman, A. E. (1977), “Quasi fast Hankel transform,” Opt. Lett. 1, pp. 13–15.

    Article  Google Scholar 

  • Skilling, J. (1981), “Algorithms and applications,” in Maximum-Entropy and Bayesian Methods in Inverse Problems, C. R. Smith and W. T. Grandy, Jr., eds., Reidel, Dordrecht (1985), pp. 83–132.

    Google Scholar 

  • Skilling, J. (1983), “Recent developments at Cambridge,” these proceedings.

    Google Scholar 

  • Skilling, J., and R. K. Bryan (1984), “Maximum entropy image reconstruction: general algorithm,” Mon. Not. R. Astron. Soc. 211, pp. 111–124.

    MATH  Google Scholar 

  • Skilling, J., and A. K. Livesey (1984), “Maximum entropy as a variational principle and its practical computation,” presented at the EMBO Workshop on Maximum Entropy Methods in the X-ray Phase Problem, Orsay, France.

    Google Scholar 

  • Skilling, J., A. W. Strong, and K. Bennett (1979), “Maximum entropy image processing in gamma-ray astronomy,” Mon. Not. R. Astron. Soc. 187, pp. 145–152.

    Google Scholar 

  • Stubbs, G. J. (1974), “The effect of disorientation on the intensity distribution of non-crystalline fibres. II. Applications,” Acta. Crystallogr. A30, pp. 639–645.

    Google Scholar 

  • Stubbs, G. J., and R. Diamond (1975), “The phase problem for cylindrically averaged diffraction patterns. Solution by isomorphous replacement and application to tobacco mosaic virus,” Acta. Crystallogr. A31, pp. 709–718.

    Google Scholar 

  • Wilkins, S. W., J. N. Varghese, and M. S. Lehmann (1983), “Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory,” Acta Crystallogr. A39, pp. 49–60.

    MathSciNet  Google Scholar 

  • Willingale, R. (1981), “Use of the maximum entropy method in x-ray astronomy,” Mon. Not. R. Astron. Soc. 194, pp. 359–364.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this paper

Cite this paper

Bryan, R.K. (1987). Maximum Entropy in Structural Molecular Biology: The Fiber Diffraction Phase Problem. In: Smith, C.R., Erickson, G.J. (eds) Maximum-Entropy and Bayesian Spectral Analysis and Estimation Problems. Fundamental Theories of Physics, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3961-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3961-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8257-0

  • Online ISBN: 978-94-009-3961-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics