Skip to main content

Relationship between Toxicity and Bioconcentration for Some Organic Chemicals. I. Examination of the Relationship

  • Conference paper
QSAR in Environmental Toxicology - II

Abstract

For organic chemicals causing toxicity primarily by narcosis, Fergusonian theory suggests that, at the site of toxic action, toxicant concentration should be relatively constant for the biological response in question. It can be shown, employing existing acute and chronic toxicity QSARs and bioconcentration log Kow relationships, that this is true. Equipotency does appear to exist, at least as a first approximation, and estimated whole body toxicant concentrations are presented for some organic chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • APHA. 1980. Standard Methods for the Examination of Water and Wastewater, Fifteenth Edition. American Public Health Association, Washington, DC, 1134 p.

    Google Scholar 

  • ATRG, unpublished. Aquatic toxicity of multiple organic compounds: 1,2,4,5-tetrachlorobenzene. Unpublished Report #3 for the Ontario Ministry of the Environment. Aquatic Toxicity Research Group, Lakehead University, Thunder Bay, Ontario, 23 p.

    Google Scholar 

  • Brooke, L.T., Call, D.J., Geiger, D.L. and Northcott, C.E. (Eds.) 1984. Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas). University of Wisconsin-Superior, Superior, Wisconsin, 414 p.

    Google Scholar 

  • Call, D.J., Brooke, L.T., Knuth, M., Poirier, S. and Hoglund, M. 1985. Fish subchronic toxicity prediction model for industrial organic chemicals that produce narcosis. Environ. Toxicol. Chem. 4: 335–341.

    Article  CAS  Google Scholar 

  • Chew, R. and Hamilton, M. 1985. Toxicity curve estimation: fitting a compartment model to median survival times. Trans. Am. Fish. Soc. 114: 403–412.

    Article  CAS  Google Scholar 

  • Ferguson, J. 1939. The use of chemical potentials as indices of toxicity. Proc. R. Soc. London, Ser. B. 127: 387–404.

    Article  CAS  Google Scholar 

  • Ferguson, J. and Piri, H. 1948. The toxicity of vapours to the grain weevil. Ann. Appl. Biol. 35: 532–550.

    Article  CAS  Google Scholar 

  • Filov, V., Golubev, A., Liublina, E. and Tolokontsev, N. 1979. Quantitative Toxicology: Selected Topics. John Wiley and Sons, New York.

    Google Scholar 

  • Fiserova-Bergerova, V. (Ed.) 1983. Modeling of Inhalation Exposure to Vapors: Uptake, Distribution and Elimination. Volumes 1 and 2. CRC Press, Boca Raton, Florida, 166 and 173 p.

    Google Scholar 

  • Halfon, E. 1985. Regression method in ecotoxicology: a better formulation using the geometric mean functional regression. Environ. Sci. Technol. 19: 747–749.

    Article  CAS  Google Scholar 

  • Kishino, T. and Kobayashi, K. 1980. A study on the absorption mechanism of pentachlorophenol in goldfish relating to its distribution between solvents and water. Bull. Jap. Soc. Sci. Fish. 46: 1165–1168.

    CAS  Google Scholar 

  • Kobayashi, K. and Kishino, T. 1980. Effect of pH on the toxicity and accumulation of pentachlorophenol in goldfish. Bull. Jap. Soc. Sci. Fish. 46: 167–170.

    CAS  Google Scholar 

  • Könemann, H. and van Leeuwen, K. 1980. Toxicokinetics in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere 9: 3–19.

    Article  Google Scholar 

  • Kozak, V., Simsiman, G., Chesters, G., Stensby, D. and Harkin, J. 1979. Review of the Environmental Effects of Pollutants XI: Chlorophenols. Report # EPA-600/1–79–012. U.S. Environmental Protection Agency, Cincinnati, Ohio, 228 p.

    Google Scholar 

  • Mackay, D. 1982. Correlation of bioconcentration factors. Environ. Sci. Technol. 16: 274.

    Article  CAS  Google Scholar 

  • Mackay, D. and Hughes, A. 1984. Three-parameter equation describing the uptake of organic compounds by fish. Environ. Sci. Technol. 18: 439–444.

    Article  CAS  Google Scholar 

  • McCarty, L.S., Hodson, P.V., Craig, G. and Kaiser, K.L.E. 1985. On the use of quantitative structure-activity relationships to predict the acute and chronic toxicity of organic chemicals to fish. Environ. Toxicol. Chem. 4: 595–606.

    Article  CAS  Google Scholar 

  • McGowan, J. 1951. The physical toxicity of chemicals, I. Vapours. J. Appl. Chem. 1: Supplement 2: 120–126.

    Google Scholar 

  • McGowan, J. 1952a. The physical toxicity of chemicals, II. Factors affecting physical toxicity in aqueous solutions. J. Appl. Chem. 2: 323–328.

    Article  CAS  Google Scholar 

  • McGowan, J. 1952b. The physical toxicity of chemicals, III. A systematic treatment of physical toxicity in aqueous solutions. J. Appl. Chem. 2: 651–658.

    Article  CAS  Google Scholar 

  • McKim. J. Personal communication. U.S. EPA., Duluth, Minnesota.

    Google Scholar 

  • Rand, G. and Petrocelli, S. (Eds.) 1985. Fundamentals of Aquatic Toxicology: Methods and Applications. Hemisphere Publishing Corp., Washington, DC, 666 p.

    Google Scholar 

  • Ricker, W. 1973. Linear regression in fishery research. J. Fish Res. Board Can. 30: 409–434.

    Article  Google Scholar 

  • Saarikoski, J. and Viluksela, M. 1982. Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotoxicol. Environ. Sat. 6: 501–512.

    Article  CAS  Google Scholar 

  • Sokal, R. and Rohlf, F. 1981. Biometry. Second Edition. W.H. Freeman and Company, San Francisco, 858 p.

    Google Scholar 

  • Spacie, A. and Hamelink, J. 1982. Alternative models for describing the bioconcentration of organisms in fish. Environ. Toxicol. Chem. 1: 309–320.

    Article  CAS  Google Scholar 

  • Spehar, R.L., Nelson, H.P., Swanson, M.J. and Renoos, J.W. 1985. Pentachlorophenol toxicity to amphipods and fathead minnows at different test pH values. Environ. Toxicol. Chem. 4:389–397.

    Article  CAS  Google Scholar 

  • U.S. EPA. 1980. Appendix B - Guidelines for deriving Water Quality Criteria for the protection of aquatic life and its uses. Federal Register 45(231): 79341–79357.

    Google Scholar 

  • Veith, G.D., Call, D.J. and Brooke, L.T. 1983. Structure-toxicity relationship for the fathead minnow (Pimephales promelas): narcotic industrial chemicals. Can. J. Fish. Aquat. Sci. 40: 743–748.

    Article  CAS  Google Scholar 

  • Zitko, V. 1979. An equation of lethality curves in tests with aquatic fauna. Chemosphere 2:47–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

McCarty, L.S. (1987). Relationship between Toxicity and Bioconcentration for Some Organic Chemicals. I. Examination of the Relationship. In: Kaiser, K.L.E. (eds) QSAR in Environmental Toxicology - II. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3937-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3937-0_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8246-4

  • Online ISBN: 978-94-009-3937-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics