Skip to main content

Chemical Equilibrium between Minerals and Natural Waters

  • Chapter
The Physics and Chemistry of Aqueous Ionic Solutions

Part of the book series: NATO ASI Series ((ASIC,volume 205))

  • 243 Accesses

Abstract

The purpose of this paper is to review some of the models of electrolyte solutions which are currently used to calculate chemical equilibrium between minerals and natural waters.

After a brief description of the ion association approach to the calculation of activity coefficients of aqueous species, we introduce Pitzer’s ion interaction model and emphasize its links with the ion pairing phenomenology. The capacity of this model to calculate the thermodynamic properties of complex electrolyte solutions at high concentration is illustrated by two examples of mineral formation in salted lakes.

The last part of the paper addresses the chemistry of metamorphic fluids. It is shown that because of the decrease of the dielectric constant of water, the aqueous ionic species tend to associate into neutral complexes. The description of such fluids may thus be simpler than that for the earth surface conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson G.M. and Burnham C.W. 1983, Am. J. Sci. 2 8 3-A, 283.

    Google Scholar 

  2. Braitsch O. 1971, Salt deposits: their origin and composition, Springer-Verlag, 279 p.

    Google Scholar 

  3. Burnham C.W. 1967, in Geochemistry of Hydrothermal Ore Deposits, 34, H.L. Barnes, ed., Holt, Rinehart and Winston.

    Google Scholar 

  4. Frantz J.D. and Popp R.K. 1979, Geochim. Cosmochim. Acta 4 3, 1223.

    Article  CAS  Google Scholar 

  5. Garrels R.M. and Thomson M.E. 1962, Am. J. Sci. 2 6 0 57.

    Article  CAS  Google Scholar 

  6. Gueddari M., Monnin C., Perret D., Fritz B., Tardy Y. 1983, Chem. Geol. 3 9 (1–2), 165.

    Article  CAS  Google Scholar 

  7. Guggenheim E.A. 1935, Phil. Mag. 1 9 (127), 588.

    CAS  Google Scholar 

  8. Gunter W.D. and Eugster H.P. 1978, Contr. Mineralogy Petrology 6 6, 271.

    Article  CAS  Google Scholar 

  9. Harvie C.E. 1982, Ph. D. thesis, Univ. Calif, at San Diego.

    Google Scholar 

  10. Harvie C.E. and Weare J.H. 1980, Geochim. Cosmochim. Acta 4 4, 981.

    Article  CAS  Google Scholar 

  11. Harvie C.E., Moller N., Weare J.H. 1984, Geochim. Cosmochim. Acta 4 8 723.

    Google Scholar 

  12. Helgeson H.C. 1981, in Chemistry and Geochemistry of Solutions at high Temperatures and Pressures, 133, D.T. Rickard and F.F. Wickman eds., Pergamon, 564 p.

    Google Scholar 

  13. Jones B.F., Eugster H.P. and Rettig S.L. 1977, Geochim. Cosmochim. Acta 4 1, 53.

    Article  CAS  Google Scholar 

  14. Marshall W.L. and Warakomski J.M. 1980, Geochim. Cosmochim. Acta 4 4, 915.

    Article  CAS  Google Scholar 

  15. Monnin C. 1983, Thèse Docteur-Ingénieur, Université P. Sabatier, Toulouse (France).

    Google Scholar 

  16. Monnin C. and Schott J. 1984, Geochim. Cosmochim. Acta 4 8, 571.

    Article  CAS  Google Scholar 

  17. Nordstrom D.K., Plummer L.N., Wigley T.M.L., Wolery T.J., Ball J.W., Jenne E.A., Basset R.L., Crerar D.A., Florence T.M., Fritz B., Hoffman M., Holdren G.R. Jr., Lafon G.M., Mattigod S.V., McDuff R.E., Morel F., Reddy M.M., Sposito G. and Thraikill J. 1979, A.C.S. Symp. Series 9 3, 857.

    Google Scholar 

  18. Pitzer K.S. 1975, J. Sol. Chem. 5 (4), 269.

    Article  Google Scholar 

  19. Pitzer K.S. 1979, in Activity Coefficients in Electrolyte Solutions, I (7), 157, R.M. Pytckowicz ed., CRC Press, 265 p.

    Google Scholar 

  20. Pitzer K.S. and Silvester L.F. 1977, J. Sol. Chem. 5 (4), 269.

    Article  Google Scholar 

  21. Truesdell A.H. and Jones B.F. 1974, J. Res. U.S. Geol. Surv. 2, 233.

    CAS  Google Scholar 

  22. Whitfield M. 1979, in Activity Coefficients in Electrolyte Solutions, II(3), 153, R.M. Pytckowicz ed., CRC Press, 300 p.

    Google Scholar 

  23. Wyart J. and Sabatier G. 1955, CR. Acad. Sc., Paris 2 4 0, 2157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Monnin, C., Schott, J. (1987). Chemical Equilibrium between Minerals and Natural Waters. In: Bellissent-Funel, MC., Neilson, G.W. (eds) The Physics and Chemistry of Aqueous Ionic Solutions. NATO ASI Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3911-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3911-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8236-5

  • Online ISBN: 978-94-009-3911-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics