Skip to main content

On Sequences of Imbedded Integration Rules

  • Chapter
Numerical Integration

Part of the book series: NATO ASI Series ((ASIC,volume 203))

Abstract

It is shown that given a one-dimensional interpolatory integration rule with positive weights based on a set S of n points, it is possible to find a subset T of S containing n-1 points such that the weights of the interpolatory integration rule based on T are all nonnegative. Consequently, given any one-dimensional positive interpolatory integration rule R, we can generate a sequence of imbedded positive interpolatory rules starting with R. This idea of starting with a rule R and generating a sequence of imbedded rules, which is due to Patterson, can be applied to generate sequences of imbedded multidimensional integration rules. In this case, we do not aim for positive rules but for efficient rules. Some examples are given as to what can be attained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Davis and P. Rabinowitz, ‘Methods of Numerical Integration’, Academic Press, New York, 1975.

    Google Scholar 

  2. S. Elhay and J. Kautsky, ‘COWIQ and SIWIQ: Fortran subroutines for the weights of interpolatory quadratures’, Tech. Rep. TR82–08, Dept, of Computing Science, Univ. of Adelaide, South Australia, 1982.

    Google Scholar 

  3. G.H. Golub and J.H. Welsch, ‘Calculation of Gauss quadrature rules’, Math. Comp. 23 (1969) 221–230.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.-A. Gustafson, ‘Algorithm 417. Rapid computation of weights of interpolatory quadrature rules’, CACM 14 (1971) 807.

    MathSciNet  Google Scholar 

  5. D.K. Kahaner and G. Monegato, ‘Nonexistence of extended Gauss-Laguerre and Gauss-Hermite quadruatre rules with positive weights’, ZAMP 29 (1978) 983–986.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Kautsky and S. Elhay, ‘Calculation of the weights of interpolatory quadratures’, Numer. Math. 40 (1982) 407–422.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Lyness, ‘When not to use an automatic quadrature routine’, SIAM Rev. 25 (1983) 63–87.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Monegato, ‘A note on extended Gaussian quadrature rules’, Math. Comp. 30 (1976) 812–817.

    MathSciNet  MATH  Google Scholar 

  9. T.N.L. Patterson, ‘The optimum addition of points to quadrature formulae’, Math. Comp. 22 (1968) 847–856.

    Article  MATH  Google Scholar 

  10. T.N.L. Patterson, ‘On some Gauss and Lobatto based integration formulae’, Math. Comp. 22 (1968) 877–881.

    Article  MATH  Google Scholar 

  11. F. Peherstorfer, ‘Characterization of positive quadrature formulas’, SIAM J. Math. Anal. 12 (1981) 935–942.

    Article  MathSciNet  Google Scholar 

  12. P. Rabinowitz and G. Weiss, ‘Tables of abscissas and weights for numerical evaluation of integrals of the form \(\int^{\infty}_{0}{\text{e}}^{\text{{-x}}}{\text{x}}^{\text{{n}}}{\text{f(x)dx}}\)’, MTAC 13 (1959) 285–294.

    MathSciNet  MATH  Google Scholar 

  13. H.E. Salzer and R. Zucker, ‘Table of the zeros and weight factors of the first fifteen Laguerre polynomials’, Bull. Amer. Math. Soc. 55 (1949) 1004–1012.

    Article  MathSciNet  MATH  Google Scholar 

  14. A.H. Stroud and D.H. Secrest, ‘Gaussian Quadrature Formulas’, Prentice-Hall, Englewood Cliffs, NJ, 1966.

    Google Scholar 

  15. I.P. Mysovskih, A special case of quadrature formulae containing preassigned nodes, (Russian), Vesci. Akad. Nauuk BSSR Ser. Fiz.-Tehn. Navuk, No. 4, 1964, 125–127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Rabinowitz, P., Kautsky, J., Elhay, S., Butcher, J.C. (1987). On Sequences of Imbedded Integration Rules. In: Keast, P., Fairweather, G. (eds) Numerical Integration. NATO ASI Series, vol 203. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3889-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3889-2_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8227-3

  • Online ISBN: 978-94-009-3889-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics