Skip to main content

Temperature Sensitive Contrast Agents for Neutron Radiography

  • Conference paper
Neutron Radiography

Abstract

Gadolinium salts have been used as contrast agents from the early days of neutron radiography because of the extremely high neutron absorption cross section of gadolinium. Gadolinium salts, such as the chloride and the nitrate, are generally very soluble in water but are also often hygroscopic and corrosive. This work reports a series of gadolinium chelates based on gadolinium acetylacetonate that were adapted for use as contrast agents. The chelates are soluble in a variety of volatile organic solvents such as methylene chloride and acetone. In addition, some are thermally stable in the absence of oxygen and water, and by observing when they melt or vaporize, they can be used as temperature indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. von der Hardt and H. Röttger, Eds., Neutron Radiography Handbook. D. Reidel, Dordrecht, Holland, 1981.

    Google Scholar 

  2. R. L. Newacheck, in Neutron Radiography. p. 77, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  3. D. J. Taylor, in Neutron Radiography, p. 145, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  4. C. E. Leighty, in Neutron Radiography, p. 153, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  5. G. Bayon, L. Laporte and J. Le Gall, in Neutron Radiography, p. 67, J. P, Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  6. P. A, Gillespie and T. Wall, in Neutron Radiography, p. 85. J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  7. K. G. Golliher, in Neutron Radiography, p. 339, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  8. J. M. Vulcain, J. Tamisier, J. H. Espie, R. Masse and A. Laporte, in Neutron Radiography, p. 555, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  9. H. Hausen and R. Lölgen, in Neutron Radiography, p. 369, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  10. S. C. Johnson and L. W. Dahlke, Rev. Sci. Instr. 49 (2), 242 (1978).

    Article  ADS  Google Scholar 

  11. G. B. Holland, in Neutron Radiography, p. 333, J. P. Barton and P. von der Hardt, Eds., D. Reidel, Dordrecht, Holland, 1983.

    Google Scholar 

  12. H. Rauch and A. Zeilinger, Atomic Energy Rev. 15 (2), 249 (1977).

    Google Scholar 

  13. A. R. Spowart, J. Phys. E, 5 (6), 497 (1972).

    Article  ADS  Google Scholar 

  14. A. F, Cockerill, G. L. O. Davies, R. C. Harden and D. M. Rackham, Chem. Rev. 73 (6), 553 (1973).

    Article  Google Scholar 

  15. A.-G. Schering, Belg. BE 898,709 (CI. A61K), 16 May 1984, DE Appl. 3, 302, 410, 21 Jan 1983.

    Google Scholar 

  16. J. G. Stites, C. N. McCarty and L. L. Quill, J. Amer. Chem. Soc. 70, 3142 (1948).

    Article  Google Scholar 

  17. G. S. Hammond, D. C. Nonhebel and C-H. S. Wu, Inorg. Chem. 2, 73 (1963).

    Article  Google Scholar 

  18. K. G. Eisentraut and R. E. Sievers, J. Amer. Chem. Soc. 87, 5254 (1965).

    Article  Google Scholar 

  19. E. W. Berg and J. J. Chaing Acosta, Anal. Chim. Acta. 40, 101 (1968).

    Article  Google Scholar 

  20. F. Halverson, J. S. Brinen and J. R. Leto, J. Chem. Phys. 40, 2790 (1964).

    Article  ADS  Google Scholar 

  21. A. Perrotto and R. G. Charles, J. Inorg. Nucl. Chem. 26, 373 (1964).

    Article  Google Scholar 

  22. J. S. Brenizer and M. F. Sulcoski, in Use and Development of Low and Medium Flux Research Reactors, p. 958, O. K. Harling, L. Clark, Jr. and P. von der Hardt, Eds., Karl Thiemig Graphische, W. Germany, 1984.

    Google Scholar 

  23. M. F. Sulcoski, Neutron Computed Tomography Using Real Time Neutron Radiography, Ph.D. Dissertation, University of Virginia, Charlottesville, Virginia, U.S.A., 1985.

    Google Scholar 

  24. J. S. Brenizer, B. Hosticka, R. W. Jenkins, Jr. and D. D. McRae, Second World Conference on Neutron Radiography, Paris, France, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Brenizer, J.S., Jenkins, R.W., McRae, D.D., Paine, J.B., Sulcoski, M.F. (1987). Temperature Sensitive Contrast Agents for Neutron Radiography. In: Barton, J.P., Farny, G., Person, JL., Röttger, H. (eds) Neutron Radiography. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3871-7_101

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3871-7_101

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8221-1

  • Online ISBN: 978-94-009-3871-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics