Advertisement

The Phases of Matter

  • Walter T. GrandyJr.
Part of the Fundamental Theories of Physics book series (FTPH, volume 19)

Abstract

Various stability problems have been addressed in the preceding chapters, particularly in Chapter 3 where we discussed briefly the stability of the equilibrium states of macroscopic systems. These states are defined by, and are functions of thermodynamic variables which themselves range over certain domains. Experience indicates that these domains separate into subdomains for which the equilibrium states can be grouped into qualitatively different classes, and thus one encounters different phases of the same bit of matter.

Keywords

Critical Exponent Hard Sphere Critical Phenomenon Isothermal Compressibility Coexistence Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Abraham, D.B., and H. Kunz: 1977, ‘Ornstein-Zernike Theory of Classical Fluids at low Density’,Phys. Rev. Letters 39, 1011.MathSciNetADSCrossRefGoogle Scholar
  2. Ailawadi, N.K.: 1980, ‘Equilibrium Theories of Simple Liquids’, Phys. Reports 57, 241.ADSCrossRefGoogle Scholar
  3. Alder, B.J., and T.E. Wainwright: 1957, ‘Phase Transition for a Hard Sphere System’,J. Chem. Phys. 27, 1208.ADSCrossRefGoogle Scholar
  4. Andrews, T.: 1869, ‘On the Continuity of the Gaseous and Liquid States of Matter’, Phil. Trans. Roy. Soc. 159, 575.CrossRefGoogle Scholar
  5. Baker, G.A., Jr., G. Gutiérrez, and M. de Llano: 1984, ‘Classical and Quantum Hard Sphere Fluids:Theory and Experiment’,Ann. Phys. (N.Y.) 153, 283.CrossRefGoogle Scholar
  6. Bardeen, J.: 1950, ‘Wave Functions for Superconducting Electrons’,Phys. Rev. 80, 567.MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. Bardeen, J., L.N. Cooper, and J.R. Schrieffer: 1957, ‘Theory of Superconductivity’, Phys. Rev. 108, 1175.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Barker, J.A., and D. Henderson: 1976, ‘What is ‘Liquid’? Understanding the States of Matter’,Rev. Mod. Phys. 48, 587.MathSciNetADSCrossRefGoogle Scholar
  9. Blatt, J.M.: 1964, Theory of Superconductivity, Academic Press, New York.zbMATHGoogle Scholar
  10. Bloch, F.: 1928, ‘Über die Quantenmechanik der Elektronen in Krystallgittern’, Z. Phys. 52, 555.ADSGoogle Scholar
  11. Chandler, D., J.D. Weeks, and H.C. Andersen: 1983, ‘Van Der Waals Picture of Liquids, Solids,and Phase Transformations’, Science 220, 787.ADSCrossRefGoogle Scholar
  12. Cooper, L.N.: 1956, ‘Bound Electron Pairs in a Degenerate Fermi Gas’,Phys. Rev. 104, 1189.ADSzbMATHCrossRefGoogle Scholar
  13. Drude, P.: 1900, ‘Zur Elektronen Theorie der Metalle’, Ann. d. Phys. 1, 566.ADSCrossRefGoogle Scholar
  14. Fetter, A.L., and J.D. Walecka: 1971, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York.Google Scholar
  15. Fisher, M.E.: 1964, ‘Correlation Functions and the Critical Region of Simple Fluids’, J. Math. Phys. 5, 944.ADSCrossRefGoogle Scholar
  16. Ginzburg, V.L.: 1960, ‘Some Remarks on Phase Transitions of the Second Kind and the MicroscopicTheory of Ferroelectric Materials’, Sov. Phys. Solid State 2, 1824.MathSciNetGoogle Scholar
  17. Ginzburg, V.L., and L.D. Landau: 1950, ‘On the Theory of Superconductivity’, JETP 20, 1024.Google Scholar
  18. [English translation, D. ter Haar (ed.), Collected Papers of L.D. Landau, Gordon and Breach, New York, 1965, p.546].Google Scholar
  19. Goodman, B.B.: 1953, ‘The Thermal Conductivity of Superconducting Tin Below 1 °K’,Proc.Phys. Soc. (London) A66, 217.ADSGoogle Scholar
  20. Griffiths, R.B.: 1964, ‘A Proof that the Free Energy of a Spin System is Extensive’, J. Math. Phys. 5, 1215.ADSCrossRefGoogle Scholar
  21. Griffiths, R.B.: 1965a, ‘Thermodynamic Inequality Near the Critical Point for Ferromagnets andFluids’, Phys. Rev. Letters 14, 1623.ADSGoogle Scholar
  22. Griffiths, R.B.: 1965b, ‘Ferromagnets and Simple Fluids Near the Critical Point: Some Thermodynamic Inequalities’, J. Chem. Phys. 43, 1958.ADSCrossRefGoogle Scholar
  23. Guggenheim, E.A.: 1945, ‘The Principle of Corresponding States’, J. Chem. Phys. 13, 253.ADSCrossRefGoogle Scholar
  24. Guggenheim, E.A.: 1957, Thermodynamics, North-Holland, Amsterdam.zbMATHGoogle Scholar
  25. Heisenberg, W.: 1928, ‘Zur Theorie des Ferromagnetismus’, Z. Phys. 49, 619.ADSCrossRefGoogle Scholar
  26. Hemmer, P.C., and J.L. Lebowitz: 1976, ‘Systems with Weak Long-range Potentials’, in C. Domb and M.S. Green (eds.), Phase Transitions and Critical Phenomena, Vol.5b, Academic Press, New York.Google Scholar
  27. Kac, M., G.E. Uhlenbeck, and P.C. Hemmer: 1963, ‘ On the van der Waals Theory of the Liquid-Vapor Equilibrium.I. Discussion of a One-Dimensional Model’, J. Math. Phys. 4, 216.MathSciNetADSCrossRefGoogle Scholar
  28. Kadanoff, L.P.: 1966, ‘Scaling Laws for Ising Models Near Tc’, Physics 2, 263.Google Scholar
  29. Kadanoff, L.P., W. Götze, D. Hamblein, R. Hecht, E.A.S. Lewis, V.V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J. Kane: 1967, ‘Static Phenomena Near Critical Points: Theory and Experiment’, Rev.Mod. Phys. 39, 395.ADSCrossRefGoogle Scholar
  30. Kamerlingh Onnes, H.: 1911, ‘Further Experiments with Liquid Helium. D. On the Change of the Electrical Resistance of Pure Metals at Very Low Temperatures, etc. V. The Disappearance of the Resistance of Mercury’, Leiden Comm. 122b Google Scholar
  31. Kamerlingh Onnes, H.: 1913, ‘Superconductors’, Leiden Comm. Suppl. 34, 55.Google Scholar
  32. Landau, L.D.: 1937a, ‘On the Theory of Phase Transitions, I.’, JETP 7, 19.Google Scholar
  33. Landau, L.D.: 1937b, ‘On the Theory of Phase Transitions, II.’, JETP 7, 627.Google Scholar
  34. [Landau’s papers are translated in D. ter Haar (ed.), Collected Papers of L.D. Landau, Gordon and Breach, New York, 1965.]Google Scholar
  35. Lebowitz, J.L., and O. Penrose: 1966, ‘Rigorous Treatment of the Van Der Waals-Maxwell Theory of the Liquid-Vapor Transition’, J.Math. Phys. 7, 98.MathSciNetADSCrossRefGoogle Scholar
  36. Lee, T.D., and C.N. Yang: 1952, ‘Statistical Theory of Equations of State and Phase Transitions;II. Lattice Gas and Ising Model’, Phys. Rev. 87, 410.MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. Levine, D., and P.J. Steinhardt: 1984, ‘Quasicrystals: A New Class of Ordered Solids’, Phys. Rev. Letters 53, 2477.ADSCrossRefGoogle Scholar
  38. Lieb, E.H.: 1966, ‘Quantum-Mechanical Extension of the Lebowitz-Penrose Theorem on the VanDer Waals Theory’, J. Math. Phys. 7, 1016.MathSciNetADSCrossRefGoogle Scholar
  39. London, F.: 1950, Superßuids, Vol.1, Wiley, New York.Google Scholar
  40. London, F., and H. London, ‘The Electromagnetic Equations for the Superconductor’, Proc. Roy. Soc. A149, 71.Google Scholar
  41. Lorentz, H.A.: 1905, ‘The Motion of Electrons in Metallic Bodies’,Amsterdam Proc. 7, 438, 588, 684.Google Scholar
  42. Luks, K.D., and J.J. Kozak: 1978, ‘The Statistical Mechanics of Square-Well Fluids’, Adv. Chem. Phys. 37, 139.CrossRefGoogle Scholar
  43. Lynton, E.A.: 1969, Superconductivity, Chapman and Hall, London.Google Scholar
  44. Maxwell, E.: 1950, ‘Isotope Effect in the Superconductivity of Mercury’,Phys. Rev. 78, 477.ADSCrossRefGoogle Scholar
  45. Mayer, J.E., and M.G. Mayer: 1940, Statistical Mechanics, Wiley, New York.zbMATHGoogle Scholar
  46. Meissner, W., and R. Ochsenfeld: 1933, ‘Ein neuer Effekt bei Eintritt der Supraleitfähigkeit’, Naturwiß. 21, 787.ADSCrossRefGoogle Scholar
  47. Ornstein, L.S., and F. Zernike: 1914, ‘On the Theory of the String Galvanometer of Einthoven’, Proc. Kon. Akad. Wet. 17, 793.Google Scholar
  48. Perçus, J.K., and G.J. Yevick: 1958, ‘Analysis of Classical Statistical Mechanics by Means of Collective Coordinates’, Phys. Rev. 110, 1.MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. Pines, D., and P. Nozières: 1966, The Theory of Quantum Liquids, Vol.I, Benjamin, New York.Google Scholar
  50. Pippard, A.B.: 1953, ‘An Experimental and Theoretical Study of the Relation Between Magnetic Field and Current in a Superconductor’, Proc. Roy. Soc. A216, 547.ADSGoogle Scholar
  51. Poston, T., and I. Stewart: 1978, Catastrophe Theory and Its Applications, Pitman, London.zbMATHGoogle Scholar
  52. Reif, F.: 1965, Statistical and Thermal Physics, McGraw-Hill, New York.Google Scholar
  53. Reynolds, C.A., B. Serin, and L.B. Nesbitt: 1950, ‘The Isotope Effect in Superconductivity.I. Mercury’, Phys. Rev. 84, 691.ADSCrossRefGoogle Scholar
  54. Rickayzen, G.: 1965, Theory of Superconductivity, Interscience (Wiley), New York.Google Scholar
  55. Rosenbluth, M.N., and A.W. Rosenbluth: 1959, ‘Further Results on Monte Carlo Equations of State’, J. Chem. Phys. 22, 881.ADSCrossRefGoogle Scholar
  56. Runnels, L.K.: 1974, ‘Zeros of the Grand Partition Function’, in S.L. Mintz and S.M. Widmayer (eds.), Quantum Statistical Mechanics in the Natural Sciences, Plenum, New York, p.281.Google Scholar
  57. Rushbrooke, G.S.: 1963, ‘On the Thermodynamics of the Critical Region for the Ising Problem’, J. Chem. Phys. 39, 842.ADSCrossRefGoogle Scholar
  58. Shechtman, D.S., I. Blech, D. Gratias, and J.W. Cahn: 1984, ‘A Metallic Phase with Long-Ranged Orientational Order and No Translational Symmetry’, Phys. Rev. Letters 53, 1951.ADSCrossRefGoogle Scholar
  59. Sommerfeld, A.: 1928, ‘Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik I.Teil: Allgemeines Strömungs= und Austrittsvorgänge’, Z. Phys. 47, 1.ADSCrossRefGoogle Scholar
  60. Stanley, H.E.: 1971, Introduction to Phase Transitions and Critical Phenomena, Clarendon Press, Oxford.Google Scholar
  61. Stearns, M.B.: 1978, ‘Why Is Iron Magnetic?’, Physics Today, April, p.34.Google Scholar
  62. Thiele, E.: 1963, ‘Equation of State for Hard Spheres’, J. Chem. Phys. 39, 474.ADSCrossRefGoogle Scholar
  63. Tinkham, M.: 1975, Introduction to Superconductivity, McGraw-Hill, New York.Google Scholar
  64. van der Waals, J.D.: 1873, ‘Over de continuiteit van den gas- en vloeistoftoestand’, Ph.D thesis, Leiden. [German translation, F. Roth, 1881: Die Continuität des Gas formigen und Flußigen Zustandes, Barth, Leipzig].Google Scholar
  65. Van Hove, L.: 1954, ‘Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting particles’, Phys. Rev. 95, 249.ADSzbMATHCrossRefGoogle Scholar
  66. van Kampen, N.G.: 1964, ‘Condensation of a Classical Gas with Long-Range Attraction’, Phys. Rev. 135, A362.CrossRefGoogle Scholar
  67. Weast, R.C.(ed.): 1971, Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland.Google Scholar
  68. Weiss, P.: 1907, ‘L’Hypothèse du Champ Moléculaire et la Propriété Ferromagnètique’, J. de Phys. 6, 667.Google Scholar
  69. Wertheim, M.S.: 1963, ‘Exact Solution of the Perçus-Yevick Integral Equation for Hard Spheres’, Phys. Rev. Letters 10, 321.MathSciNetADSzbMATHCrossRefGoogle Scholar
  70. Wertheim, M.S.: 1964, ‘Analytic Solution of the Perçus-Yevick Equation’, J. Math. Phys. 5, 643.MathSciNetADSzbMATHCrossRefGoogle Scholar
  71. Widom, B.: 1964, ‘Degree of the Critical Isotherm’, J. Chem. Phys. 1, 1633.MathSciNetADSCrossRefGoogle Scholar
  72. Widom, B.: 1965, ‘Equation of State in the Neighborhood of the Critical Point’, J. Chem. Phys. 43, 3898.ADSCrossRefGoogle Scholar
  73. Wigner, E.P.: 1960, ‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’, Comm. Pure Appl. Math. 13, 1.zbMATHCrossRefGoogle Scholar
  74. Wilson, K.G.: 1971, ‘Renormalization Group and Critical Phenomena.I. Renormalization Group and the Kadanoff Scaling Picture’, Phys. Rev. B 4, 3174, 3184.ADSzbMATHCrossRefGoogle Scholar
  75. Wilson, K.G.: 1972, ‘Feynman Graph Expansion for Critical Exponents’, Phys. Rev. Letters 28, 548.ADSCrossRefGoogle Scholar
  76. Wilson, K.G.: 1983, ‘The Renormalization Group and Critical Phenomena’, Rev. Mod. Phys. 55, 583.ADSCrossRefGoogle Scholar
  77. Wilson, K.G., and M.E. Fisher: 1972, ‘Critical Exponents in 3.99 Dimensions’, Phys. Rev. Letters 28, 240.ADSCrossRefGoogle Scholar
  78. Wilson, K.G., and J. Kogut: 1974, ‘The Renormalization Group and the c Expansion’, Phys. Reports 12, 75.ADSCrossRefGoogle Scholar
  79. Yang, C.N.: 1962, ‘Concept of Off-Diagonal Long-Range Order and the Quantum Phases of LiquidHe and of Superconductors’, Rev. Mod. Phys. 34, 694.ADSCrossRefGoogle Scholar
  80. Yang, C.N., and T.D. Lee: 1952, ‘Statistical Theory of Equations of State and Phase Transitions.I.Theory of Condensation’,Phys. Rev. 87, 404.MathSciNetADSzbMATHCrossRefGoogle Scholar
  81. Yarnell, J.L., M.J. Katz, R.G. Wenzel, and S.H. Koenig: 1973, ‘Structure Factor and Radial Distribution Function for Liquid Argon at 85 °K’, Phys. Rev. A 7, 2130.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Walter T. GrandyJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WyomingUSA

Personalised recommendations