Equilibrium Thermodynamics

  • Walter T. GrandyJr.
Part of the Fundamental Theories of Physics book series (FTPH, volume 19)


Some reflection upon the problem of describing the properties of a physical system possessing a very large number of degrees of freedom suggests that it reduces to a matter of probable inference. As observed earlier, although it may be possible in principle to solve the N equations of motion the question becomes moot when it is recognized that it is virtually impossible to specify the set of N initial conditions necessary to make predictions from the solutions. One never has complete knowledge of these microscopic initial states and, even if such information were available, that amount of data would certainly overwhelm human capacity to deal with it.


Partition Function Statistical Mechanic Ensemble Average Canonical Ensemble Microscopic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baierlein, R.: 1971, Atoms and Information Theory, Freeman, San Francisco.Google Scholar
  2. Bernstein, S.: 1928, ‘Sur les Fonctions Absolument Monotones’, Acta Math. 52, 1.zbMATHCrossRefGoogle Scholar
  3. Bowers, R.G., and A. McKerrell: 1978, ‘The Information-Theoretic Statistical Mechanics of a System in Contact with a Heat Reservoir’, Am. J. Phys. 46, 138.ADSCrossRefGoogle Scholar
  4. Dunning-Davies, J.: 1983, ‘On the Meaning of Extensivity’, Phys. Letters 94A, 346.MathSciNetADSGoogle Scholar
  5. Einstein, A.: 1936, ‘Physics and Reality’, J. Franklin Inst. 221, No.3.Google Scholar
  6. Feinstein, A.: 1958, Foundations of Information Theory, McGraw-Hill, New York.zbMATHGoogle Scholar
  7. Hawking, S.W.: 1974, ‘Black Hole Explosions?’, Nature 248, 30.ADSCrossRefGoogle Scholar
  8. Hawking, S.W.: 1975, ‘Particle Creation by Black Holes’, Commun. Math. Phys. 43, 199.MathSciNetADSCrossRefGoogle Scholar
  9. Jaynes, E.T.: 1965, ‘Gibbs vs. Boltzmann Entropies’, Am. J. Phys. 33, 391.ADSzbMATHCrossRefGoogle Scholar
  10. Jaynes, E.T.: 1979, ‘Where Do We Stand on Maximum Entropy?’, in R.D. Levine and M. Tribus (eds.), The Maximum Entropy Formalism, M.I.T. Press, Cambridge, MA, p.15.Google Scholar
  11. Laplace, P.S.: 1774, ‘Mémoir sur la probabilité des causes par les événements’, Mém. Acad. Sci. Paris 6, 621.Google Scholar
  12. Nashed, M.Z. (ed.): 1976,Generalized Inverses and Applications, Academic Press, New York.zbMATHGoogle Scholar
  13. Nelson, R.: 1961, ‘Statistical Mechanical Basis for the Second Law of Thermodynamics’, Ph.Dthesis, Stanford Univ. (unpublished).Google Scholar
  14. Nernst, W.: 1906, ‘Über die Berechnung chemischer Gleichgewichte aus thermischen Mesungen’,Gött. Nachr. 1, 1.Google Scholar
  15. Ruelle, D.: 1969, Statistical Mechanics, Benjamin, New York.zbMATHGoogle Scholar
  16. Scalapino, D.J.: 1961, ‘Irreversible Statistical Mechanics’, Ph.D thesis, Stanford Univ. (unpublished).Google Scholar
  17. Schrödinger, E.: 1932, Über Indeterminismus in der Physik, J.A. Barth, Leipzig.zbMATHGoogle Scholar
  18. Shannon, C.E., and W. Weaver: 1949, The Mathematical Theory of Communication, Univ. of Illinois Press, Urbana.zbMATHGoogle Scholar
  19. Wigner, E.P.: 1949, ‘Invariance in Physical Theory’, Proc. Am. Phil. Soc. 93, 521.Google Scholar
  20. Van Hove, L.: 1949, ‘Quelques Propriétés Générales de L’intégrale de Configuration d’un Systèmede Particules Avec Interaction’, Physic a 15, 951.ADSzbMATHGoogle Scholar
  21. Wigner, E.P.: 1960, ‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’,Comm. Pure Appl. Math. 13, 1.zbMATHCrossRefGoogle Scholar
  22. Wigner, E.P.: 1964a, ‘The Role of Invariance Principles in Natural Philosophy’, Proc. Internatl.School of Phys. ‘Enrico Fermi 29, 40.MathSciNetADSGoogle Scholar
  23. Wigner, E.P.: 1964b, ‘Events, Laws of Nature, and Invariance Principles’, in The Nobel Lectures, Elsevier, New York.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • Walter T. GrandyJr.
    • 1
  1. 1.Department of Physics and AstronomyUniversity of WyomingUSA

Personalised recommendations