Skip to main content

Chemical and Physical Properties of the Hall- Héroult Electrolyte

  • Chapter
Molten Salt Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 202))

Abstract

Molten cryolite is the main ingredient of the Hall-Héroult electrolyte. Additives are used to improve its chemical and physical properties, hence it is necessary to understand how each additive functions. The ideal additive should decrease the solubility of reduced species in the melt and lower the liquidus temperature for improved Faradaic efficiency. It should increase or at least not decrease alumina solubility, increase electrical conductivity, decrease density (to provide better separation between the aluminum and the molten salt), and decrease vapor pressure (to minimize vapor loss). It should not contain or produce any ionic species with a lower discharge potential than aluminum (for the cation) or oxygen (for the anion). There is no ideal additive; hence, compromises are made. Alumina solubility and electrical conductivity are often sacrificed for improved Faradaic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, P.A., J.Am.Ceram.Soc. 1975, 58 (7–8) 2881

    Google Scholar 

  2. Rolin, M., Bull.Soc.Chim. 1961, 1120, France

    Google Scholar 

  3. Stinton, D.P. and Brown, J.J., J.Am.Ceram.Soc. 1975, 58. (5–6), 257.

    Article  CAS  Google Scholar 

  4. Dewing, E.W., J.EIectrochem.Soc. 1970, 117 (6) 780.

    Article  Google Scholar 

  5. Brown, J.J. Jr., Lee, S.S., Lei, K.S. and Xu, P., Light Metals 1984,p 841.

    Google Scholar 

  6. Edwards, J.D., Maranville, L.F., Russell, A.S., and Taylor, C.S., J. Electrochem.Soc. 1952, 99, 527.

    Article  CAS  Google Scholar 

  7. Yim, E.W. and Feinleib, M., J.EIectrochem.Soc. 1957,104 626.

    Article  CAS  Google Scholar 

  8. Matiasovsky, K., Ordzovensky, S, and Malinovsky, M., Chem. Zvesti 1963, 17, 839.

    CAS  Google Scholar 

  9. Matiasovsky, K. and Danek, V., J.EIectrochem.Soc. 1973,120, 919.

    Article  CAS  Google Scholar 

  10. Matiasovsky, K., Malinovsky, M., and Danek, V., Electrochim. Acta 1970,15,25

    Article  CAS  Google Scholar 

  11. Choudhuri,,G., J.EIectrochem.Soc. 1973.120. 381

    Article  Google Scholar 

  12. Vetyukov, M.M. and Tsyplatov, A.M., Nach. Doki. Vyssh. Shk. Met. 1978, 7, 41

    Google Scholar 

  13. Vetyukov, M.M. and Chuvilyaev, R.G., Izv.Vyssh.Ucheb.Zaved.;Tsvet.Met. 1964, 7 (6), 74

    CAS  Google Scholar 

  14. Borisoglebsky, Y V., Abuzeyd, S., and Vetyukov, M.M. Tsvet.Met., 1978, 7, 41

    Google Scholar 

  15. Dewing E.W. and Yoshida, K.; Can.Met.Quart. 1976, (4) 299.

    Google Scholar 

  16. Dewing, E.W.; Trans.Met.Soc. AIME 1969, 245 (8) 1829.

    CAS  Google Scholar 

  17. Vajna, A.; Aluminio 1951, 20, 147.

    CAS  Google Scholar 

  18. Landon, G.J. and Ubbelohde, A.R.; Proc.Roy.Soc.A 1957, 240 160.

    Article  CAS  Google Scholar 

  19. Howard, E.H.; J.Am.Chem.Soc 1954, 76, 2041.

    Article  CAS  Google Scholar 

  20. Kvande, Halvor, Thermodynamics of the system: NaF-AIF 3-AI2O3-AI studied by vapor pressure measurements, NTH-Trykk Pub. 1979, Univ. Trondheim, Norway.

    Google Scholar 

  21. Gerlach, J., Hennig, U. and Mucke, M., Erzmetall 1973, 26, 496.

    CAS  Google Scholar 

  22. Kuxmann, U. and Tilessen, U., Erzmetall 1967, 20,147.

    CAS  Google Scholar 

  23. Badoz-Lambling, J. and Saget, J.P., CR Acad.Sci. 1971, Paris, Ser. C 273, 324.

    Google Scholar 

  24. Thonstad, J. and Oblakowski, R., Electrochim.Acta 1980, 25, 223.

    Article  CAS  Google Scholar 

  25. Grjotheim, K. Contribution to Theory of Aluminium Electrolysis Kgl.Norske Videnscabers Selskabs Skrifler 1956, Nr. 5, Bruns Bakhan, Trondheim, Norway.

    Google Scholar 

  26. Gerlach, J., Hennig, U. and Rodel, R., Metall 1975,29 267.

    CAS  Google Scholar 

  27. Gerlach, J., Schmidt, H., Schmidt, W., Erzmetall 1967, 20,111.

    CAS  Google Scholar 

  28. Yoshida, K. and Dewing, E.W.; Met.Trans 1972, 3, 1817.

    Article  CAS  Google Scholar 

  29. Hollingshead, E.A. and Phillips, N.W.F., The Electrochemistry of Aluminum Production, 38th Annual Conference of Chemistry of Canada, Quebec, 1955.

    Google Scholar 

  30. Yoshida, K., Ishihara, T., Yokoi, G., Trans.TMS-AIME 1968. 242, 1961.

    Google Scholar 

  31. Haupin, W.E., J.EIectrochem.Soc. 1960. 107, 232.

    Article  Google Scholar 

  32. Thonstad, J., Can.J.Chem 1965, 43, 3429.

    Article  CAS  Google Scholar 

  33. Bersimenko, O.P., Andreev, A.S., and Vetyukov, M.M., J.Appl.Chem. USSR (Eng.Trans) 1967, 40, 1613; Zh.Prikl. Khim. 1967 40, 1548.

    CAS  Google Scholar 

  34. Vetyukov, M.M. and Vinokurov, V.B., Phy. Chem. and Electrochem. of Molten Salts and Slags, 1969, 367, Kiev, USSR.

    Google Scholar 

  35. Thonstad, J. and Rolseth, S., Light Metals 1976,1, 171, Metallurgical Soc. of AIME.

    CAS  Google Scholar 

  36. Rolseth, S. and Thonstad, J., Proc. 4th Yugoslav Internationl Symp. on Aluminium 1982, 293, Titograd.

    Google Scholar 

  37. Arthur, A.M., Met.Trans 1974, 5, 1225.

    Article  CAS  Google Scholar 

  38. Brown, J.A. and Hollingshead, E.A., Light Metals 1968 Met. Soc. of AIME.

    Google Scholar 

  39. Stroup, P.T., Trans.Met.Soc. AIME 1964,230, 356.

    CAS  Google Scholar 

  40. Ginsberg, H. and Sparwald, V., Aluminium 1965, 41,181.

    CAS  Google Scholar 

  41. Edwards, J.D. and Moormann, T.A., Chem.Met.Eng. 1921, 24, 61.

    CAS  Google Scholar 

  42. Gebhardt, Becker, M., and Dorner, A., Z.Metallk 1953, 44, 473.

    Google Scholar 

  43. Abramov, G.A., Gupalo, L.P., Kostyukov, A.A., Lozhkin, L.N., and Vetyukov, M.M., Teoreticheskie Osnovy Elektrométallurgii alyuminiya, Metallurgizdat 1953, Moscow, USSR.

    Google Scholar 

  44. Matiasovsky, K., Malinovsky, M., and Paucirova, M., Collection Czechoslov.Chem.Commun. 1970, 25, 907.

    Google Scholar 

  45. Malinovsky, M. Matiasovsky, K., and Paucirova, M., Chem. Zvesii, 1969, 23, 27.

    Google Scholar 

  46. Rabkin, D.M., Bukhalova, G.A., and Litvinova, G.N., Avtomat. Svarka 1966, 19 (6) 75.

    CAS  Google Scholar 

  47. Kononenko, V.I., Privalov, I.M., Rubinshtein, G.M., and Yatsenko, S.P., Teplofix. Vys. Temp., 1969, 7, 265.

    CAS  Google Scholar 

  48. Hertzberg, T., Oye, H.A., Tørklep, K., Light Metals 1980, 159 Metallurgical Soc. of AIME.

    Google Scholar 

  49. Votava, 1. and Matiasovsky, K., Chem.Zvesti 1973, 27, 582.

    CAS  Google Scholar 

  50. Whitaker, S., Workshop Proc. 1979, NSF/RA PB 80, 20155, 290.

    Google Scholar 

  51. Vajna, A., Alluminio 1951, 20, 29.

    CAS  Google Scholar 

  52. Vajna, A., Metallurgia Ital. 1957, 49,124.

    CAS  Google Scholar 

  53. Bratland, D., Ferro, C.M. and Ostvold, T., Acta Chem. Scand. 1983, A37, 487.

    Article  CAS  Google Scholar 

  54. Belyaev, A.I., Elektrolit Alyuminievykh Vann, Metalurgizdat, Moscow, 1961.

    Google Scholar 

  55. Zhemchuzhina, E.A., and Belyaev, A.K., Izv,Vyssh.Ucheb.Zav, Tsvet.Met. 1962, 5 (1), 82

    CAS  Google Scholar 

  56. Belyaev, A.I., Firsanova, L.A., and Zhemchuzhina, E.A., Fizicheskaya khimiya resplavlnnykh solei, Metallurgizdat, 1957, Moscow, USSR.

    Google Scholar 

  57. Temkin, M., Acta Physicochim. 1945, 20 411, USSR.

    CAS  Google Scholar 

  58. Flory, J.P., J.Chem.Phys. 1942, 10, 51.

    Article  CAS  Google Scholar 

  59. Grjotheim, K. and Rankin, W.J., Chem (South Africa) 1979, (5) 1, 8.

    CAS  Google Scholar 

  60. Flood, H. and Maun A., Acta.Chem.Scan 1950, 15 1624.

    Article  Google Scholar 

  61. Saboungi, M.L. and Blander, M., J.Chem.Phys. 1975, 63, 212.

    Article  CAS  Google Scholar 

  62. Lin, P.L., Pelton, A.D. and Saboungi, M.L., Met.Trans.B. 1982, 13 61.

    Article  Google Scholar 

  63. Darken, L.S., J.Amn.Chem.Soc. 1950, 722909.

    Article  CAS  Google Scholar 

  64. Gorkcen, N.A., J.Phys.Chem. 1960, 46, 401.

    Article  Google Scholar 

  65. Grjotheim, K., Krohn, C., Malinovsky, M., Matiasovsky, K., and Thonstad, J., Aluminium Electrolysis-Furidamentals of the Hall-Heroult Process, 1982, Aluminium Verlag, Dusseldorf.

    Google Scholar 

  66. Arndt, K. and Kalass, W., Z.EIektrochem. 1924, 30, 12.

    CAS  Google Scholar 

  67. Piontelli, R., LaChim. I’ndustr. 1940, 22 501.

    CAS  Google Scholar 

  68. Howard, E.H., J. Amn. Chem. Soc. 1954, 76, 2041.

    Article  CAS  Google Scholar 

  69. Brynestad, J., Grjotheim, K. and Urnes, S., Metal.Ital 1960, 52, 495.

    CAS  Google Scholar 

  70. Rolin, M. and Bernard, M., Bui.Soc.Chim.France 1962, 423, 429, and 939.

    Google Scholar 

  71. Frank, W.B. and Foster, L.M., J.Phys.Chem. 1960, 64, 95.

    Article  CAS  Google Scholar 

  72. Ratkje, S.K. and Rytter, E., J.Phys.Chem. 1974, 78, 1499.

    Article  CAS  Google Scholar 

  73. Rytter, E. and Ratkje, S.K., Acta Chem.Scand. 1975, A29, 565.

    Article  CAS  Google Scholar 

  74. Gilbert, B., Begun, G.M. and Mamantov, G., Inorg.Nucl.Chem. Letters 1974,10, 1123.

    Article  CAS  Google Scholar 

  75. Cochran, C.N., Trans.Met.Soc. of AIME (1967) 239, 1056.

    CAS  Google Scholar 

  76. Dewing, E.W. ‘Models of Halo-aluminate Melts’ Oct. 1985 meeting of Electrochem.Soc., Las Vegas, NV.

    Google Scholar 

  77. Holm, J.L., Thermodynamic Properties of Molten Cryolite and Other Fluoride Mixtures, Dr. Techn. Dissertation 1971, The University of Trondheim, Norway.

    Google Scholar 

  78. Ratkje, S.K., Dr. thesis 1971, Phys.Chem.Div., University of Trondheim, NTH, Norway

    Google Scholar 

  79. Sterten, A, Hamberg, K and Maeland, I., Acta Chemica. Scand. 1982, A36, 329.

    Article  CAS  Google Scholar 

  80. Sterten, A., Electrochimica Acta 1980, 25 1673.

    Article  CAS  Google Scholar 

  81. Frank, W.B. and Foster, L.M., J.Phys.Chem. 1957, 61 1531.

    Article  CAS  Google Scholar 

  82. Tural, A. and Rolin, M., Electrochem.Acta 1972,17 2277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Haupin, W. (1987). Chemical and Physical Properties of the Hall- Héroult Electrolyte. In: Mamantov, G., Marassi, R. (eds) Molten Salt Chemistry. NATO ASI Series, vol 202. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3863-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3863-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8217-4

  • Online ISBN: 978-94-009-3863-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics