Skip to main content

Adiabatic Separation, Broken Symmetries and Geometry Optimization

  • Conference paper
Density Matrices and Density Functionals

Abstract

The identification of localized, broken symmetry, effective potentials is the main problem in the current discussions of localization, ergodicity and chaos. An effective potential based on an exact separation involving an extension of a conditional amplitude previously presented by Hunter can always be constructed. A generalization of the Hellmann-Feynman theorem (HFT) for non-adiabatic situations is presented. Its significance for geometry optimizations, localized excitations and collective electronic motions is discussed.

On leave from: Escuela de Quimica, Facultad de Ciencias, Unibersidad Central de Venezuela, Caracas, Venezuela

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. M. Born and J. R. Oppenheimer, Ann.Phys. 84(1927)457. M.Born and K.Huang, “Dynamical Theory of Crystal Lattices”, Oxford U.P. (1954).

    Google Scholar 

  2. U. Fano, Rep.Prog.Phys. 46, 97 (1983).

    Article  Google Scholar 

  3. H. Klar, J.Phys.A 18, 153T (1985).

    Google Scholar 

  4. D. R. Herrick, Adv.EFem.Phys. LH, 1 (1983).

    Google Scholar 

  5. O.Goscinski and V.Mujica, “Adiabatic coordinate separation and large N-dimensional limit in two-electron ions”. To be published in Proc. V-th Int.Congress of Quantum Chemistry, Montreal, Canada. Int.J.Quantum Chem. oo, ooo (1986).

    Google Scholar 

  6. H. Klar, P. Zoller and TT. V. Fedorov, Phys.Rev. A 30, 658 (1984).

    Article  CAS  Google Scholar 

  7. R.S.Caswell and M.Danos, J.Math.Phys. 11, 349(l970).

    Google Scholar 

  8. R.G.Woolley, Chem.Phys.Lett. 55, 443 (15*78).

    Google Scholar 

  9. H.A.Jahn and E.Teller, Proc.Roy.Soc.Lond.A 161, 220 (1937).

    Google Scholar 

  10. E.R.Davidson, J.Phys.Chem. 87, 4783 (1983).

    Article  Google Scholar 

  11. G.Hose, H.S.Taylor and Y.Y.Bai, J.Chem.Phys. 80, 4363 (1984).

    Article  Google Scholar 

  12. R.P.Feynman, Phys.Rev. 56, 340 (1939). H.Hellmann, “Einfuhring in die Quantenchemie” Barth, Leipzig (1937). S.T.Epstein, “The Variation Method in Quantum Chemistry” Ac.Press, New York (1974). P.O.Löwdin, J.Mol.Spec. 3, 46 (1959).

    Article  CAS  Google Scholar 

  13. M.D.Frank-Kamenetskii ani A.V.Lukashin, Sov.Phys.Usp. 18, 391 (1976).

    Google Scholar 

  14. O.Goscinski ancTA.Palma, Int.J.Quantum Chem. 15, 197 (1979).

    Article  Google Scholar 

  15. G.Hunter, Int.J.Quantum Chem. Symp. 8, 413 (1574), Int.J.Quantum Chem. Symp. 9, 237 (1975).

    Article  Google Scholar 

  16. F.T.Smith, Phys.Rev. 179, Til (1969).

    Google Scholar 

  17. D.M.Bishop and G.Hunter, Mol.Phys. 30, 1433 (1975).

    Article  Google Scholar 

  18. J.Czub and L.Molniewicz, Mol.Phys. IS, 1301 (1978).

    Google Scholar 

  19. G.Hunter, Int.J.Quantum Chem. 19, 753 (1981).

    Google Scholar 

  20. O.Goscinski, Int.J.Quantum Chem. Symp. oo, ooo (1985).

    Google Scholar 

  21. F.Ham, Int.J.Quantum Chem. Symp. 5, 191HT1971).

    Google Scholar 

  22. P.Van Leuven and L.Lathouwers in “Quantum Dynamics of Molecules. The New Experimental Challenge to Theorists” Ed. by R.G.Woolley, NATO Advanced Study Institutes Series, Plenum, New York(1979).

    Google Scholar 

  23. A.S.Bamzai and B.M.Deb, Rev.Mod.Phys. 53, 95 (1981).

    Article  Google Scholar 

  24. R.M.Bader, “The Nature of Chemical BonciTng”, in “The Force Concept In Chemistry”, B.M.Deb Ed. Van Nostrand Reinhold New York (1981).

    Google Scholar 

  25. R.G.Parr, “Density Functional Theory of Atoms and Molecules” in “Horizons of Quantum Chemistry”, K.Fukui and B.Pullman Eds. D. Reidel, Dordrecht (1980).

    Google Scholar 

  26. C.W.Brown, Phys.Rev.Lett. 44, 1054 (1980).

    Article  Google Scholar 

  27. P.O.Löwdin, Phys.Rev. 97, Ti74 ( 1955 ). E. R.Davidson, “ReducedUensity Matrices in Quantum Chemistry” Academic Press, New York (1976).

    Google Scholar 

  28. E.Schmidt, Math.Ann. 63, 433 (1907). A.J.Coleman, Rev.Mod.PTfys. 35, 668 (1963).

    Google Scholar 

  29. B.C.Carlson and J.M. KelTerrys. Rev. 121, 659 (1961).

    Article  Google Scholar 

  30. D.B.Bishop and L.P.Cheung, Int.J.Quantum Chem. 1JS, 517 (1979).

    Google Scholar 

  31. N.Moiseyev, R.Schatzberger, P.Froelich and O.Goscinski Chem.Phys. 83, 3924 (1985), E.R.Davidson J.Mol.Spect. 61, 371 (1976), R.M.Stratt, N.C.Handy and O.Miller, J.Chem.Phys. 71, 3311 (1979)

    Article  Google Scholar 

  32. P.W.Anderson, “Basic Notions of Condensed Matter Physics” Benjamin-Cummings, Menlo Park (1984).

    Google Scholar 

  33. D.R.Herrick and M.E.Kellman, Phys.Rev.A 21, 418 (1980).

    Google Scholar 

  34. S.I.Nikitin and V.N.Ostrovsky, J.Phys.B TS, 1609 (1982).

    Google Scholar 

  35. B.L.Christensen-Dalsgaard, Phys.Rev.A 29, 470 (1984).

    Google Scholar 

  36. C.D.Lin, Phys.Rev.A 12, 493 (1975).

    Google Scholar 

  37. E.A.Hylleraas, Z. PhysTTc 54, 347 (1929). C.Eckart, Phys.Rev. 36, 578 (1930). H.Shull and P.O.LöwdTn, J.Chem.Phys. 25, 1035 (1956).

    Article  Google Scholar 

  38. E.A.Hylleraas, Z. Physik 48, 469 (1928) ibid 54, 347 (1929). SeeTl so Adv.Quantum Chem. U 1 (1956).

    Article  CAS  Google Scholar 

  39. H.A.Bethe and E.E.Salpeter, “The Quantum Mechanics of One- and Two-electron Atoms”, Springer Verlag (1957).

    Google Scholar 

  40. H.Juh, G.Ezra, P.Rehmus and R.S.Berry, Phys.Rev.Lett. 47, 497 (1981).

    Article  Google Scholar 

  41. A.R.P. Rau, J.Phys.B 16, L699 (1983).

    Article  Google Scholar 

  42. G.Wannier, Phys.Rev. W, 817 (1953).

    Google Scholar 

  43. D.R.Herrick, J.Math.Phys. 16, 281 (1975).

    Article  Google Scholar 

  44. L.D.Mlodinow, M.P.Shatz, JTFTath.Phys. 25, 138 (1984) and references therein.

    Article  Google Scholar 

  45. Z.Wen and J.A very, J.Math.Phys. -26, 396 (1985) and references therein.

    Article  Google Scholar 

  46. R.D.Levine, J.Phys.Chem. 89, 2122 (1985).

    Article  Google Scholar 

  47. G.Hunter, The Exact SchrocTinger Equation for the Electron Density (Coleman Symposium, Kingston, August 1985, this volume)

    Google Scholar 

  48. T.H.Walnut, Chem.Phys.Letters 114, 265 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this paper

Cite this paper

Goscinski, O., Mujica, V. (1987). Adiabatic Separation, Broken Symmetries and Geometry Optimization. In: Erdahl, R., Smith, V.H. (eds) Density Matrices and Density Functionals. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3855-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3855-7_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8214-3

  • Online ISBN: 978-94-009-3855-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics