Skip to main content

Some Remarks on Scaling Relations in Density Functional Theory

  • Conference paper
Density Matrices and Density Functionals

Abstract

In wavefunction theory both kinetic and potential energy as functionals of wavefunction scale homogeneously; on the contrary in density functional theory, as previously shown [M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985)], based on the constrained search definition the kinetic and potential energies dg not exhibit naively expected scaling properties, that is, \(T\left[ {{\rho _\lambda }} \right] \ne {\lambda ^2}T\left[ \rho \right]\) and Vee \(\left[ {\rho \lambda } \right] \ne \lambda Vee\left[ \rho \right]\), where \({\rho _\lambda } = {\lambda ^3}\rho \left( {\lambda \overrightarrow r } \right)\), the scalecl density. To preserve the naive scaling property, a new functional of \(\rho \left( {\overrightarrow r } \right)\) and X, \(\lambda ,F\left[ {\rho ,\lambda } \right]\) is defined as \(F\left[ {\rho \left( {\vec r} \right),\lambda } \right] = \langle U\left( \lambda \right)\phi _\rho ^{\min }\left( {{{\vec r}^N}} \right)|\,\hat T\left( {{{\vec r}^N}} \right)\, + \,\hat Vee\,\left( {{{\vec r}^N}} \right)|U\left( \lambda \right)\phi _\rho ^{\min }\left( {{{\vec r}^N}} \right)\rangle \), where \(U\left( \lambda \right)\phi _\rho ^{\min }\left( {{{\overrightarrow r }^N}} \right)\) is ghat anti symmetric N-particle wavefungtion which yieldi \({\rho _\lambda }\left( {\overrightarrow r } \right) = {\lambda ^3}\rho \left( {\lambda \overrightarrow r } \right)\) and minimizes \( < \hat T\left( {{{\vec r}^N}} \right) + \lambda Vee\left( {{{\vec r}^N}} \right) > \), and where \(U\left[ \lambda \right]\) is the unitary transformation that performs the scaling of wavefunction. Then the new variational principle for ground state energy \(E_{G.S}^V\) for potential \(V\left( {\overrightarrow r } \right)\) is proved to be \(E_{G.S}^v = _{\lambda ,\rho \left( {\overrightarrow r } \right)}^{\min }\{ \int {d\overrightarrow r } v{\left( {\overrightarrow r } \right)_{\rho \lambda }}\lambda \left( {\overrightarrow r } \right) + F\left[ {\rho \left( {\overrightarrow r } \right),\lambda } \right]\} \) This allows one to satisfy virial theorem and lower the energy by optimum scaling. Further it is demonstrated that \(F\left[ {{p_\lambda }} \right] = {\lambda ^2}{F_{1/\lambda }}\left[ \rho \right]\) where \({F_{1/\lambda }}\left[ \rho \right]\) is the Levy functional \(F\left[ \rho \right]\), except that the electron-electron interaction potential is multiplied by a factor of \(_{1/\lambda }\) in the definition. As results of such a relation, the correlation component of kinetic energy \({T_C}\left[ \rho \right]\) is related to a property of \(F\left[ {{\rho _\lambda }} \right]\) and a 1/Z expansion in density functional theory for atoms exists. This paper is based on a previous work [M. Levy, W. Yang and R. G. Parr, J. Chem. Phys. 83, 2334 (1985)].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. L. J. Sham, Phys, Rev. A1 969 (1970).

    Google Scholar 

  2. L. Szasz, I. Perios-Pagan, and G. McGinn, Z. Naturforsch. Teil A30, 1516 (1975).

    Google Scholar 

  3. F. W. Averi11 and G. S. Painter, Phys. Rev. B24, 6795 (1981).

    Article  CAS  Google Scholar 

  4. S. K. Ghosh and R. G. Parr, J. Chem. Phys. 82 3307 (1985).

    Article  CAS  Google Scholar 

  5. M. Levy and J. P. Perdew, Phys. Rev. A32, 2010 (1985).

    CAS  Google Scholar 

  6. Saul T. Epstein, The Variational Method in Quantum Chemistry (Academic Press, 1974 ) p. 104.

    Google Scholar 

  7. V. Fock, Z. Physik 63, 855 (1930).

    Article  Google Scholar 

  8. M, Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979); M. Levy and J. P. Perdew, pages 11-30, Density Functional Methods in Physics, eds. R. M. Dreizler and J. da Providencia (Plenum, 1985 ).

    Google Scholar 

  9. E. H. Lieb, Int. J. Quan. Chem. 24, 243 (1983).

    Article  Google Scholar 

  10. M. Levy, W. Yang, and R. G. Parr J. Chem. Phys. 83, 2334 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this paper

Cite this paper

Yang, W. (1987). Some Remarks on Scaling Relations in Density Functional Theory. In: Erdahl, R., Smith, V.H. (eds) Density Matrices and Density Functionals. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3855-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3855-7_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8214-3

  • Online ISBN: 978-94-009-3855-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics