Skip to main content

Power Semigroups and Related Varieties of Finite Semigroups

  • Chapter
Semigroups and Their Applications

Abstract

As the title suggests, all semigroups considered in this paper will be finite. Let S be a semigroup. The power semigroup (or “global”) of S, P(S), is the set of all subsets of S with multiplication defined, for all X,Y ∈S by

$$ XY = \{ xy|x \in X,y \in Y\} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Almeida, ‘On power varieties of semigroups’, to appear.

    Google Scholar 

  2. J. Almeida, ‘Power pseudovarieties of semigroups. I, II’, to appear.

    Google Scholar 

  3. S.G. Beršadskĭ, ‘Embeddability of semigroups in a global super-semigroup of a group’, Semigroup Varieties and Semigroups of Endomorphisms, Leningrad. Gos. Ped. Inst. Leningrad (1979) 47–49 (Russian).

    Google Scholar 

  4. C. Fox and J. Rhodes, ‘The complexity of the power set of a semigroup’. Preprint, University of California, Berkeley (1984).

    Google Scholar 

  5. M. Gould and J.A. Iskra, ‘Globally determined classes of semigroups’, Semigroup Forum.

    Google Scholar 

  6. M. Gould and J.A. Iskra, ‘Embedding in globals of groups and semilattices’, to appear.

    Google Scholar 

  7. M. Gould, J.A. Iskra and P.P. Pálfy, ‘Embedding in global of finite semilattices’, preprint.

    Google Scholar 

  8. M. Gould, J.A. Iskra and C. Tsinakis, ‘Globally determined lattices and semilattices’, Algebra Universalis.

    Google Scholar 

  9. M. Gould, J.A. Iskra and C. Tsinakis, ‘Globals of completely regular periodic semigroups’, to appear.

    Google Scholar 

  10. Y. Kobayashi, ‘Semilattices are globally determined’, Semigroup Forum 29 (1984) 217–222.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Lau, ‘Finite abelian semigroups represented into the power set of finite groups’, Czech. Math. J., 29 (1979), 159–162.

    Google Scholar 

  12. E.S. Ljapin, ‘Identities valid globally in semigroups’, Semigroup Forum 24 (1982) 263–269.

    Article  MathSciNet  Google Scholar 

  13. D.J. McCarthy and D.L. Hayes, ‘Subgroups of the power semigroup of a group’. Journal of Combinatorial Theory (A) 14 (1973) 173–186.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.W. Margolis, ‘On M-varieties generated by power monoids’, Semigroup Forum 22 (1981) 339–353.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.W. Margolis, unpublished.

    Google Scholar 

  16. S.W. Margolis and J.E. Pin, ‘Minimal non commutative varieties and power varieties’, Pacific Journal of Mathematics 111 (1984) 125–135.

    MathSciNet  MATH  Google Scholar 

  17. S.W. Margolis and J.E. Pin, ‘Power monoids and finite J-trivial monoids’, Semigroup Forum 29 (1984) 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  18. S.W. Margolis and J.E. Pin,;Varieties of finite monoids and topology for the free monoid’, Proceedings of the Marquette Conference on Semigroups, Milwaukee (1984).

    Google Scholar 

  19. E.M. Mogiljanskaja, ‘Global definability of certain semigroups’, Uč. Zap. Leningrad. Gos. Ped. Inst. 404 (1971) 146–149 (Russian).

    Google Scholar 

  20. E.M. Mogiljanskaja, ‘On the definability of certain idempotent semigroups by the semigroup of their subsemigroups’, Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 37–48 (Russian).

    MathSciNet  Google Scholar 

  21. E.M. Mogiljanskaja, ‘Definability of certain holoid semigroups by means of the semigroups of all their subsets and subsemigroups’, Uč. Zap. Leningrad. Gos. Ped. Inst. 496 (1972), 49–60 (Russian).

    MathSciNet  Google Scholar 

  22. E.M. Mogiljanskaja, ‘The solution of a problem of Tamura’, Sbornik Naučnyh Trudov Leningrad. Gos. Ped. Inst. “Modern Analysis and Geometry” (1972), 148–151. (Russian).

    Google Scholar 

  23. E.M. Mogiljanskaja, ‘Non isomorphic semigroups with isomorphic semigroups of subsets’, Semigroup Forum 6 (1973), 330–333.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.F. Perrot, ‘Varietés de langages et opérations’, Theoretical Computer Science 7(1978) 197–210.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.E. Pin, ‘Varietés de langages et monoïde des parties’, Semigroup Forum 20 (1980) 11–47.

    Article  MathSciNet  MATH  Google Scholar 

  26. J.E. Pin, ‘Semigroupe des parties et relations de Green’, Can. J. Math. 36 (1984) 327–343.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.E. Pin, Varieties of formal languages. Masson, Paris (1984), English translation (1986), North Oxford Academy.

    Google Scholar 

  28. J. E. Pin and H. Straubing, ‘Monoids of upper triangular matrices’, Colloquia Mathematica Societatis Janos Bolyai (1981), 259–272.

    Google Scholar 

  29. M.S. Putcha, ‘On the maximal semilattice decomposition of the power semigroup of a semigroup’, Semigroup Forum 15 (1978) 263–267.

    Article  MathSciNet  MATH  Google Scholar 

  30. M.S. Putcha, ‘Subgroups of the power semigroup of a finite semigroup’, Can. J. Math. 31 (1979) 1077–1083.

    Article  MathSciNet  Google Scholar 

  31. Ch. Reutenauer, ‘Sur les varietés de langages et de monoïdes’, 4th GI Conference Lect. Notes in Comp. Sc. 67, Springer, (1979), 260–265.

    Google Scholar 

  32. H. Straubing, ‘Recognizable sets and power sets of finite semigroups’, Semigroup Forum 18 (1979) 331–340.

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Tamura, ‘The power semigroups of rectangular groups and chains’, preprint.

    Google Scholar 

  34. T. Tamura, ‘Power semigroups of completely simple semigroups’, preprint

    Google Scholar 

  35. T. Tamura and J. Shafer, ‘Power semigroups’, Math. Japon, 12 (1967), 25–32.

    MathSciNet  MATH  Google Scholar 

  36. T. Tamura and J. Shafer, ‘Power semigroups’, Notices AMS 14 (1967) 688.

    Google Scholar 

  37. T. Tamura and J. Shafer, ‘Power semigroups II’, Notices AMS 15 (1968), 395.

    Google Scholar 

References on languages

  1. S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. A (1974), Vol. B (1976)

    MATH  Google Scholar 

  2. G. Lallement, Semigroups and Combinatorial Applications, Wiley (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Pin, J.E. (1987). Power Semigroups and Related Varieties of Finite Semigroups. In: Goberstein, S.M., Higgins, P.M. (eds) Semigroups and Their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3839-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3839-7_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8209-9

  • Online ISBN: 978-94-009-3839-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics