Skip to main content

A Class of Inverse Semigroup Algebras

  • Chapter
Book cover Semigroups and Their Applications

Abstract

In 1976, Domanov showed that the algebra of an inverse semigroup S over a field F is semiprimitive (that is, has zero Jacobson radical) if the algebra of each maximal subgroup of S over F is semiprimitive. It is known that the converse statement is false in general. The principal purpose of this paper is to announce that if the semi-lattice of S satisfies a certain finiteness condition, introduced by Teply, Turman and Quesada in 1980, then the converse does hold. Corresponding results for primitivity are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Amitsur. ‘On the semi-simplicity of group algebras.’ Michigan Math. J. 6 (1959), 251–253.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.H. Clifford and G.B. Preston. The algebraic theory of semigroups. Math. Surveys 7 (American Math. Soc, Providence R.I., 1961 (Vol. I) and 1967 (Vol. II)).

    Google Scholar 

  3. O.I. Domanov. ‘On the semisimplicity and identities of inverse semigroup algebras.’ Rings and modules. Matem. Issled., Vyp. 38 (1976), 123–137. [In Russian].

    MathSciNet  MATH  Google Scholar 

  4. E. Formanek. ‘Group rings of free products are primitive.’ J. Algebra 26 (1973), 508–511.

    Article  MathSciNet  MATH  Google Scholar 

  5. W.D. Munn. ‘On semigroup algebras.’ Proc. Cambridge Philos. Soc. 51 (1955), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  6. W.D. Munn. ‘Matrix representations of semigroups.’ Proc. Cambridge Philos. Soc. 53 (1957), 5–12.

    Article  MATH  Google Scholar 

  7. W.D. Munn. ‘Free inverse semigroups.’ Proc. London Math. Soc (3) 29 (1974), 385–404.

    Article  MathSciNet  MATH  Google Scholar 

  8. W.D. Munn. ‘Semiprimitivity of inverse semigroup algebras.’ Proc. Roy. Soc. Edinburgh A 93 (1982), 83–98.

    MathSciNet  MATH  Google Scholar 

  9. W.D. Munn. ‘Nil ideals in inverse semigroup algebras.’ Submitted to J. London Math. Soc.

    Google Scholar 

  10. W.D. Munn. ‘Two examples of inverse semigroup algebras.’ Submitted to Semigroup Forum.

    Google Scholar 

  11. V.A. Oganesyan. ‘On the semisimplicity of a system algebra.’ Akad. Nauk Armyan. SSR Dokl. 21 (1955), 145–147. [In Russian]

    MathSciNet  MATH  Google Scholar 

  12. D.S. Passman. ‘On the semisimplicity of twisted group algebras.’ Proc. Amer. Math. Soc. 25 (1970), 161–166.

    Article  MathSciNet  MATH  Google Scholar 

  13. D.S. Passman. The algebraic structure of group rings (Wiley — Interscience, New York, 1977).

    MATH  Google Scholar 

  14. I.S. Ponizovskiĭ. ‘On matrix representations of associative systems.’ Mat. Sbornik 38 (1956), 241–260. [In Russian].

    Google Scholar 

  15. I.S. Ponizovskiĭ. ‘An example of a semiprimitive semigroup algebra.’ Semigroup Forum 26 (1983), 225–228.

    Article  MathSciNet  Google Scholar 

  16. C. Rickart. ‘The uniqueneśs of norm problem in Banach algebras.’ Ann. Math. 51 (1950), 615–628.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.V. Rukolaĭne. ‘The centre of the semigroup algebra of a finite inverse semigroup over the field of complex numbers.’ Rings and linear groups. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 75 (1978), 154–158. [In Russian].

    Google Scholar 

  18. A.V. Rukolaĭne. ‘Semigroup algebras of finite inverse semigroups over arbitrary fields.’ Modules and linear groups. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 103 (1980), 117–123. [In Russian].

    Google Scholar 

  19. M.L. Teply, E.G. Turman and A. Quesada. ‘On semisimple semigroup rings.’ Proc. Amer. Math. Soc. 79 (1980), 157–163.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Munn, W.D. (1987). A Class of Inverse Semigroup Algebras. In: Goberstein, S.M., Higgins, P.M. (eds) Semigroups and Their Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3839-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3839-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8209-9

  • Online ISBN: 978-94-009-3839-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics