Skip to main content

Visual Texture for Recognition

  • Chapter
Matters of Intelligence

Part of the book series: Synthese Library ((SYLI,volume 188))

Abstract

One of the most important tasks of the visual system in man is the recognition and identification of objects. An object within the field of view has place as well as form, color, size, texture, depth and motion. Many investigations have established the importance of shape for recognition.1 However, clinical and theoretical discussions of recognition of objects have tended to ignore the role of other visual properties in guiding recognition. This has been partly because shape information is usually more pertinent for manipulation purposes than any other object properties, but perhaps also because it is easier to think in terms of the geometry of spatial relations. Yet everyday visual experience tells one that other visual properties, such as texture, the pattern of an object’s material surface, can reliably guide recognition. For example, one can recognize a pineapple solely on the basis of the pattern of its skin, without needing to rely on additional information about its shape, size, or color. However, it is often harder to identify a lemon, an orange and even a canteloupe only on the basis of their skin pattern. How does this about?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Marr and H. K. Nishihara, “Representation and recognition of the movement of shapes,” Proc. R. Soc. Lond. B, 290, 269–294, 1978.

    Article  Google Scholar 

  2. N. S. Sutherland, “The representation of the three-dimensional objects,” Nature, 278, 395–398, 1979.

    Article  PubMed  Google Scholar 

  3. K. Stevens, “Surface perception from local analysis of texture,” A. I. Laboratory Technical Report, Mass. Institute of Technology, 1980.

    Google Scholar 

  4. D. Marr, Vision, W. H. Freeman and Co., San Francisco, 1982.

    Google Scholar 

  5. A. Witkin, “Recovering surface shape and orientation from texture,” A. I., 17, 17–47, 1981.

    Google Scholar 

  6. See Stevens, 1980.

    Google Scholar 

  7. B. Horn, “Obtaining shape from shading information,” in: The psychology of computer vision,” P. H. Winston, ed., McGraw-Hill N.Y., 1975.

    Google Scholar 

  8. M. Brady and A. Yuille, “An extremum principle for shape from contour,” A. I. Memo 711, 1983.

    Google Scholar 

  9. A. Witkin, “Shape from contour,” A. I. Technical Report, Mass. Institute of Technology, 1980.

    Google Scholar 

  10. R. Nevatia, “Depth measurement from motion stereo,”, Compt. Graphics and Image Proc., 5, 203–214, 1976.

    Article  Google Scholar 

  11. S. Ullman, “The interpretation of structure from motion,” Proc. R. Soc. Lond. B, 203, 405–426, 1979.

    Article  PubMed  Google Scholar 

  12. A. Benton, “Visuoperceptive, visuospatial and visuoconstructivę disorders,” in: Clinical Neuropsychology, K. Heilman and E. Valenstein, eds., Oxford University Press, New York, 1979.

    Google Scholar 

  13. D. Marr, 1982.

    Google Scholar 

  14. L. Vaina, “From shapes and movements to objects and actions,” Synthese, 54, 3–36, 1983.

    Article  Google Scholar 

  15. E. K. Warrington, and A. M. Taylor, “Two categorical stages of object recognition,” Perception, 7, 697–705, 1979.

    Google Scholar 

  16. G. Ratcliff and F. Newcombe, “Object recognition: some deductions from the clinical evidence,” In: Normality and pathology in cognitive function, A. W. Ellis, ed., Academic Press, N.Y., 1982.

    Google Scholar 

  17. See Vaina, 1983.

    Google Scholar 

  18. E. Warrington and T. Shallice, “Category-specific semantic impairments,” Brain, 107, 829–854, 1984.

    Article  PubMed  Google Scholar 

  19. Ratcliff and Newcombe, 1982.

    Google Scholar 

  20. E. Tulving, “Episodic and semantic memory,” In: Organization of memory, E. Tulving and E. Donaldson, eds., Academic Press, N.Y., 1972.

    Google Scholar 

  21. E. E. Smith, E. J. Shoben and L. J. Ripps, “Structure and process in semantic memory: a feature model for semantic decision,” Psychological Rev., 81, 214–241, 1974.

    Article  Google Scholar 

  22. E. Warrington, “The selective impairment of semantic memory,” Quart. J. Exp. Psych., 27, 635–657, 1975.

    Article  Google Scholar 

  23. E. Warrington, “The selective impairment of semantic memory,” Quart. J. Exp. Psych., 27, 635–657, 1975.

    Article  Google Scholar 

  24. L. Vaina, “From perceptions to cognition: a computational approach to higher level visual functions,” Sc. D. dissertation, INP, France, 1985.

    Google Scholar 

  25. Vaina, 1984.

    Google Scholar 

  26. Warrington and Taylor, 1979

    Google Scholar 

  27. L. Vaina, 1985.

    Google Scholar 

  28. L. Vaina et al., Pon.

    Google Scholar 

  29. Marr, 1982.

    Google Scholar 

  30. F. W. Campbell and J. G. Robson, “Applications of Fourier analysis to the visibility of gratings,” J. Physiol. Lond., 197, 551–556, 1968.

    PubMed  Google Scholar 

  31. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. Lond. B, 207, 187–217, 1980.

    Article  PubMed  Google Scholar 

  32. Campbell and Robson, 1978.

    Google Scholar 

  33. R. Tootell and M. Silverman, “A comparison of cytochrome oxidase and deoxyglucose patterns in macaque visual cortex,” Neuro. Abstr., 118, 6, 1982.

    Google Scholar 

  34. M. Livingstone and D. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci., 4, 309–356, 1984.

    PubMed  Google Scholar 

  35. S. E. Peterson, J. F. Baker and J. M. Allman, “Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey”, Brain Res., 197, 1980.

    Google Scholar 

  36. R. Desimone and S. Schein, “Visual property of neurons in area V4 of the macaque: sensitivity to stimulus form,” in preparation.

    Google Scholar 

  37. L. Ungerleider and M. Mishkin, “Two cortical visual systems,” in: Analysis of Visual Behavior, D. J. Ingle, M. A. Goodale and R. Mansfield, eds., MIT Press. 549–586, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Vaina, L. (1987). Visual Texture for Recognition. In: Vaina, L.M. (eds) Matters of Intelligence. Synthese Library, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3833-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3833-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8206-8

  • Online ISBN: 978-94-009-3833-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics