Skip to main content

Maps in Context: Some Analogies Between Visual Cortical and Genetic Maps

  • Chapter
Matters of Intelligence

Part of the book series: Synthese Library ((SYLI,volume 188))

Abstract

The purpose of this essay is to examine some parallels in the evolutionary and functional significance of replicated maps in the genetic material and the visual cortex. In particular, I would like to explore two related ideas. The first is that the differentiation of replicated maps is an important factor in the development of new functional capacities in evolution. The second is that the properties of maps are influenced by their context. The contextual influences are mediated in genetic systems by various forms of gene regulation. In the visual cortex, contextual influences are expressed by the effects of stimuli located outside the classical receptive fields of individual neurons making up each cortical map. These contextual influences may determine how the organs of the body are assembled by the genes and how percepts and thoughts emerge from the activity of mapped arrays of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Morgan, “An attempt to analyze the constitution of chromosomes on the basis of sex-limited inheritance in drosophilia,” J. Experimental Zoology, 11, 365–413, 1911.

    Article  Google Scholar 

  2. C. B. Bridges, “Salivary chromosomes maps,” J. Heredity, 26, 60–64, 1935.

    Google Scholar 

  3. ibid, page 64.

    Google Scholar 

  4. W.-H. Li, “Evolution of duplicate genes and pseudogenes,” in: Evolution of Genes and Proteins, Masatoshi Nei and Richard K. Koehn, eds., Sinauer Assoc., Sunderland, Mass., 1983, page 14.

    Google Scholar 

  5. E. B. Lewis, “Pseudoallelism and gene evolution,” Cold Spring Harbor Symposia on Quantitative Biology, 16, 159–174, 1951.

    PubMed  Google Scholar 

  6. S. Ohno, Evolution by Gene Duplication, Springer-Verlag, New York, 1970.

    Google Scholar 

  7. V. M. Ingram, The Hemoglobins in Genetics and Evolution, Columbia University Press, New York, 1963.

    Google Scholar 

  8. L. Hood, J. H. Campbell and S. C. R. Elgin, “The organization, expression and evolution of antibody genes and other multigene families,” Ann. Review of Genetics, 9, 305–353, 1975.

    Article  Google Scholar 

  9. R. J. Britten and D. E. Kohne, “Repeated sequences in DNA,” Science, 161, 529–540, 1968.

    Article  PubMed  Google Scholar 

  10. ibid, page 39.

    Google Scholar 

  11. H. Munk, Uber die Funktionen der Grosshirnrinde, A Hirnwald, Berlin, 1881. English translation in G. Von Bonin, Some Papers on the Cerebral Cortex, pp. 97–117, Thomas, Springfield, Illinois, 1960.

    Google Scholar 

  12. T. Inouye, Die Sehstorungen bei Schussverletzungen der Kortialen Sehsphare, nach Beobachtungen an Verwundeten der letzten Japanischen Kriege, W. Engelmann, Leipzig, 1909.

    Google Scholar 

  13. G. M. Holmes, “Disturbances of vision by cerebral lesions,” Brit. J. Ophthalmology, 2, 353, 1918.

    Article  Google Scholar 

  14. S. A. Talbot, “A lateral localization in the cat’s visual cortex,” Federation Proc., 1, 84, 1942.

    Google Scholar 

  15. W. H. Marshall, S. A. Talbot and H. W. Ades, “Cortical response of the anesthetized cat to gross photic and electrical afferent stimulation,” J. Neurophysiology, 6, 1–15, 1943.

    Google Scholar 

  16. D. H. Hubel, “Tungsten microelectrode for recording from single units,” Science, 125, 549–550, 1957.

    Article  PubMed  Google Scholar 

  17. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat,” J. Neurophysiology, 28, 229–289, 1965.

    Google Scholar 

  18. S. Polyak, The Main Afferent Fiber Systems of the Cerebral Cortex in Primates, University of California Press, Berkeley, 1932.

    Google Scholar 

  19. W. K. Gregory, “Reduplication in evolution,” Quarterly Rev. of Biology, 10, 272–290, 1935.

    Article  Google Scholar 

  20. J. M. Allman and J. K. Kaas, “A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus)”, Brain Res., 31, 85–105, 1971.

    Article  PubMed  Google Scholar 

  21. S. M. Zeki, “Functional specialization in the visual cortex of rhesus monkey,” Nature, 274, 423–428, 1978.

    Article  PubMed  Google Scholar 

  22. W. B. Spatz and J. Tigges, “Experimental-anatomical studies on the ‘Middle Temporal Visual Area (MT)’ in primates. I. Efferent corticocortical connections in the marmoset (Callithrix jacchus)”, J. Comparative Neurology, 146, 451–463, 1972.

    Article  Google Scholar 

  23. C. Gross, C. Bruce, R. Desimone, J. Fleming and R. Gattass, “Cortical visual areas of the temporal lobe,” in: Multiple Cortical Visual Areas, pp. 187–216, C. N. Woolsey, ed., Humana Press, Clifton, New Jersey, 1981.

    Google Scholar 

  24. R. Desimone and L. Ungerleider, “Multiple visual areas in the caudal superior temporal sulcus of the macaque,” J. Comparative Neurology, in press.

    Google Scholar 

  25. J. H. R. Maunsell and D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neuroscience, 3, 2563–2586, 1983.

    Google Scholar 

  26. R. J. Tusa, L. A. Palmer and A. C. Rosenquist, “Multiple cortical visual areas: visual field topography in the cat,” in: Multiple Cortical Visual Areas, pp. 1–31, C. N. Woolsey, ed., Humana Press, Englewood Cliffs, New Jersey, 1981.

    Google Scholar 

  27. M. Cartmill, “Rethinking primate origins,” Science, 184, 436–443, 1974.

    Article  PubMed  Google Scholar 

  28. L. B. Radinsky, “The oldest primate endocast,” American J. Physical Anthropology, 27, 385–388, 1967.

    Article  Google Scholar 

  29. L. B. Radinsky, The Fossil Record of Primate Brain Evolution; American Museum, New York, 1979.

    Google Scholar 

  30. J. M. Allman, “The evolution of the visual system in the early primates,” in: Progress of Psychobiology and Physiological Psychology, James Sprague and Alan Epstein, eds., 7, 1–53, Academic, New York, 1977.

    Google Scholar 

  31. Elwyn Simons, Primate Evolution, MacMillan, New York, 1972.

    Google Scholar 

  32. F. S. Szalay and E. Delson, Evolutionary History of the Primates, Academic, 1979.

    Google Scholar 

  33. J. Nathans, D. Thomas and D. Hogness, “Molecular genetics of human color vision: the genes encoding blue, green and red pigments,” Science, 232, 193–202, 1986.

    Article  PubMed  Google Scholar 

  34. The receptor protein encoded by this ancient gene may not have been photoreceptive in function, but had some other, perhaps more ubiquitous, receptor function.

    Google Scholar 

  35. G. Jacobs, Comparative Color Vision, Academic, New York, 1980.

    Google Scholar 

  36. J. H. Kaas, R. W. Guillery and J. M. Allman, “Some principles of organization in the dorsal lateral geniculate nucleus,” Brain, Behavior and Evolution, 6, 253–299, 1972.

    Article  Google Scholar 

  37. K. J. Sanderson, “Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustilidae), raccoon (Procyonidae) and Fox (Canidae) families,” J. Comparative Neurology, 153, 239–266, 1974.

    Article  Google Scholar 

  38. S. LeVay and S. K. McConnell, “ON and OFF layers in the lateral geniculate nucleus of the mink,” Nature, 300, 350–351, 1982.

    Article  Google Scholar 

  39. M. P. Stryker and K. R. Zahs, “ON and OFF sublaminae in the lateral geniculate nucleus of the ferret,” J. Neuroscience, 3, 1943–1951, 1983.

    Google Scholar 

  40. J. Conway and P. Schiller, “Laminar organization of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis),” J. Neuroscience, 4, 171–197, 1984.

    Google Scholar 

  41. P. Schiller and J. Malpeli, “Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey,” J. Neurophysiology, 41, 788–797, 1978.

    Google Scholar 

  42. S. K. McConnell and S. LeVay, “Segregation of ON- and OFF-center afferents in mink visual cortex,” Proc. National Academy of Science, 81, 1590–1593, 1984.

    Article  Google Scholar 

  43. S. M. Sherman, J. R. Wilson, J. H. Kaas and S. V. Webb, “X- and V-cells in the dorsal lateral geniculate nucleus of the owl monkey (Aotus trivirgatus)Science, 192, 475–477, 1976.

    Article  PubMed  Google Scholar 

  44. B. Dreher, Y. Fukada and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and V-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiology, 258, 433–452, 1976.

    Google Scholar 

  45. P. Schiller and J. Malpeli, opus cit., 1978.

    Google Scholar 

  46. E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of macaque monkeys,” J. Physiology, 330, 125–143, 1982.

    Google Scholar 

  47. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivites of neurons in lateral geniculate nucleus of macaque,” J. Physiology, 357, 219–240, 1984.

    Google Scholar 

  48. M. Connolly and D. Van Essen, “The representation of the visual field in the parvocellular and magnocellular laminae of the lateral geniculate nucleus in the macaque monkey,” J. Comparative Neurology, 226, 544–564, 1984.

    Article  Google Scholar 

  49. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiology, 29, 1115–1156, 1966.

    Google Scholar 

  50. D. H. Hubel and T. N. Wiesel, “Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey,” J. Comparative Neurology, 146, 421–450, 1972.

    Article  Google Scholar 

  51. J. Lund, “Organization of neurons in the visual cortex Area 17 of the monkey (Macaca mulatta),” J. Comparative. Neurol., 147, 455–496, 1973.

    Article  Google Scholar 

  52. W. B. Spatz, “Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset (Callithrix jacchus),” Exp. Brain Res., 27, 559–572, 1977.

    Article  PubMed  Google Scholar 

  53. B. Dow, “Functional classes of cells and their laminar distribution in monkey visual cortex,” J. Neurophysiology, 37, 927–946, 1974.

    Google Scholar 

  54. M. Livingstone and D. H. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neuroscience, 4, 309–356, 1984.

    Google Scholar 

  55. J. A. Movshon and W. T. Newsome, “Functional characteristics of striate cortical neurons projecting to MT in the macaque,” Soc. Neurosci. Abstr., 10, 933, 1984.

    Google Scholar 

  56. S. Zeki, “Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,” J. Physiology, 236, 549–573, 1974.

    Google Scholar 

  57. J. F. Baker, S. E. Petersen, W. T. Newsome and J. Allman, “Response properties in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): a quantitative comparison of the medial, dorsomedial, dorsolateral and middle temporal areas,” J. Neurophysiology, 45, 397–416, 1981.

    Google Scholar 

  58. J. H. R. Maunsell and D. Van Essen, “Functional properties of neurons in middle temporal visual areas (MT) of macaque monkey. I. Selectivity for stimulus direction, velocity and orientation,” J. Neurophysiology, 49, 1127–1167, 1983.

    Google Scholar 

  59. T. D. Albright, “Direction and orientation selectivity of neurons in visual area MT of the macaque,” J. Neurophysiology, 52, 1106–1130, 1984.

    Google Scholar 

  60. J. A. Movshon, E. H. Adelson, M. S. Gizzi and W. T. Newsome, “The analysis of moving visual patterns,” in: Pattern recognition mechanisms, C. Chagas, R. Gattass and C. Gross, eds., 117–151, Springer, New York, 1985.

    Google Scholar 

  61. J. A. Movshon and W. T. Newsome, “Functional characteristics of striate cortical neurons projection to MT in the macaque,” Soc. Neurosci. Abstr., 10, 933, 1984.

    Google Scholar 

  62. D. H. Hubel and T. N. Wiesel, “Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey,” J. Comparative Neurology, 146,421–450, 1972.

    Article  Google Scholar 

  63. J. Lund and R. Boothe, “Interlaminar connections and pyramidal neurons organization in the visual cortex, area 17, of the macaque monkey,” J. Comparative Neurology, 159, 305–334, 1975.

    Article  Google Scholar 

  64. W. B. Spatz, J. Tigges and M. Tigges, “Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri),” J. Comparative Neurology, 140, 155–173, 1970.

    Article  Google Scholar 

  65. M. Livingston and D. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neuroscience, 4, 309–356, 1984.

    Google Scholar 

  66. R. E. Weller and J. H. Kaas, “Cortical projections of the dorsolateral visual area in owl monkeys: the prestriate relay to inferior temporal cortex,” J. Comparative Neurology, 234, 35–59, 1985.

    Article  Google Scholar 

  67. S. Shipp and S. Zeki, “Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex,” Nature, 315, 322–325, 1985.

    Article  PubMed  Google Scholar 

  68. E. DeYoe and D. Van Essen, “Segregation of efferent connections and receptive field properties in visual area V2 of the macaque,” Nature, 317, 58–61, 1985.

    Article  Google Scholar 

  69. R. Desimone, J. Fleming and C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res., 184, 41–55, 1980.

    Article  PubMed  Google Scholar 

  70. S. E. Petersen, J. F. Baker and J. M. Allman, “Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey,” Brain Res., 197, 507–511, 1980.

    Article  PubMed  Google Scholar 

  71. R. Desimone, T. Albright, C. G. Gross and C. Bruce, “Stimulus selective properties of inferior temporal neurons in the macaque,” J. Neuroscience, 4, 2051–2062, 1984.

    Google Scholar 

  72. C. G. Gross, “Inferotemporal cortex and vision,” Prog. in Physiological Psychology, 5, 77–115, 1973.

    Google Scholar 

  73. I am indebted to Richard Andersen for suggesting this point of view to me.

    Google Scholar 

  74. J. C. Horton in “Cytochrome oxidase patches: a new cytoarchitectonic feature of the monkey visual cortex,” Phil. Trans. Roy. Soc. Lond., 304, 199–253, 1984.

    Article  Google Scholar 

  75. M. Livingstone and D. Hubel, “Anatomy and physiology of a color system in the primate visual cortex,” J. Neurosci., 4, 309–356, 1984.

    PubMed  Google Scholar 

  76. E. A. DeYoe and D. Van Essen, “Segregation of efferent connections and receptive field properties in visual area V2 of the macaque,” Nature, 317, 58–61, 1985.

    Article  Google Scholar 

  77. S. Shipp and S. Zeki, “Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkeys visual cortex,” Nature, 315, 322–325, 1985.

    Article  PubMed  Google Scholar 

  78. ibid.

    Google Scholar 

  79. J. F. Baker, S. E. Petersen, W. T. Newsome and J. M. Allman, opus cit., 1981.

    Google Scholar 

  80. V. M. Ingram, The Hemoglobins in Genetics and Evolution, Columbia University Press, New York, 1963.

    Google Scholar 

  81. L. Hood, J. H. Campbell and S. C. R. Elgin, “The organization, expression and evolution of antibody genes and other multigene families,” Ann. Rev. Genetics, 9, 305–353, 1975.

    Article  Google Scholar 

  82. E. B. Lewis, “A gene complex controlling segmentation in Drosophilia,” Nature, 276, 565–570, 1978.

    Article  PubMed  Google Scholar 

  83. E. B. Lewis, “Pseudoallelism and gene evolution,” Cold Spring Harbor Symposia in Quantitative Biology, 16, 159–174, 1951.

    Google Scholar 

  84. E. B. Lewis, Opus cit., 1978

    Google Scholar 

  85. W. J. Gehring, “The molecular basis of development,” Scientific American, October, 1985, pp. 153–162.

    Google Scholar 

  86. ibid.

    Google Scholar 

  87. A. Laughton and M. P. Scott, “Sequence of a Drosophilia segmentation gene: protein structure homology with DNA-binding proteins,” Nature, 310, 25–31, 1984.

    Article  Google Scholar 

  88. Alternatively, these highly conserved sequences could be the product of convergent evolution.

    Google Scholar 

  89. M. P. Scott, “Homeotic gene transcripts in the neural tissue of insects,” Trends in Neurosciences, 7, 221–223, 1984.

    Article  Google Scholar 

  90. J. Allman, F. Miezin and E. McGuinness, “Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons,” Ann. Rev. Neurosci., 8, 407–430, 1985.

    Article  PubMed  Google Scholar 

  91. ibid.

    Google Scholar 

  92. ibid.

    Google Scholar 

  93. J. Allman, F. Miezin and E. McGuinness, “Direction and velocity specific responses from beyond the classical receptive field in cortical visual area MT,” Perception, 4, 105–126, 1985.

    Article  Google Scholar 

  94. J. I. Nelson and B. Frost, “Orientation selective inhibition from beyond the classic visual receptive field,” Brain Res., 139, 359–365, 1978.

    Article  PubMed  Google Scholar 

  95. P. L. Scilley, S. C. P. Wong, “Moving background patterns reveal double-opponency of directionally specific pigeon tectal neurons,” Exp. Brain Res., 43, 173–185, 1981.

    PubMed  Google Scholar 

  96. M. Von Grunau and B. J. Frost, “Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvanian visual area,” Exp. Brain Res., 49, 84–92, 1983.

    Article  Google Scholar 

  97. R. Desimone, S. Schien, J. Moran and L. Ungerleider, “Contour, color and shape analysis beyond the striate cortex,” Vis. Res., 25, 441–452, 1985.

    Article  PubMed  Google Scholar 

  98. J. J. Gibson, The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston, 1966.

    Google Scholar 

  99. J. J. Koenderink, “Space, form and optical deformation,” in: Brain Mechanisms and Spatial Vision, D. Ingle, D. Lee and M. Jeannerod, eds., Nijhot, The Hague, 1984.

    Google Scholar 

  100. R. Von der Heydt, E. Peterhands and G. Baumgartner, “Illusory contours and cortical neuron responses,” Science, 224, 1260–1262, 1984.

    Article  PubMed  Google Scholar 

  101. S. M. Zeki, “Color coding in the cerebral cortex: the responses of wavelength-selective and color-coded cells in monkey visual cortex to changes in wavelength composition,” Neuroscience, 9, 767–781, 1983.

    Article  PubMed  Google Scholar 

  102. R. E. Weller and J. J. Kaas, “Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys,” J. Comparative Neurology, 228, 81–104, 1983.

    Article  Google Scholar 

  103. J. Allman, F. Miezin, E. McGuinness,” opus cit., 1985.

    Google Scholar 

  104. J. H. R. Maunsell and D. C. Van Essen, “The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,” J. Neuroscience, 3, 2563–2586, 1983.

    Google Scholar 

  105. J. Graham, J. Wall and J. Kaas, “Cortical projections of the medial visual area in the owl monkey, Aotus trivirgatus,” Neuroscience Letters, 15, 109–114, 1979.

    Article  PubMed  Google Scholar 

  106. B. McClintock, “Controlling elements and the gene,” Cold Spring Harbor Symposia in Quantitative Biology, 21, 197–216, 1956.

    Google Scholar 

  107. J. Moran and R. Desimone, “Selective attention gates visual processing in the extrastriate cortex,” Science, 229, 782–784, 1985.

    Article  PubMed  Google Scholar 

  108. J. H. R. Maunsell, personal communication.

    Google Scholar 

  109. M. Mishkin, “A memory system in the monkey,” Phil. Trans. of the Roy. Soc. B, 298, 85–96, 1982

    Article  Google Scholar 

  110. D. G. Amaral and J. L. Price, “Amygdalo-cortical projections in the monkey (Macaca fascicularis),” J. Oomparative Neurology, 230, 465–496, 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Allman, J. (1987). Maps in Context: Some Analogies Between Visual Cortical and Genetic Maps. In: Vaina, L.M. (eds) Matters of Intelligence. Synthese Library, vol 188. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3833-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3833-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8206-8

  • Online ISBN: 978-94-009-3833-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics