Skip to main content

Abstract

Solar Furnace is an optical system in which solar radiations are concentrated in to a small area (generally a cavity) where very high temperatures are obtained. Solar furnaces may also be called as solar energy concentrators where area may vary from as small as 1 m2 paraboloid to several thousands of m2 of reflectors known as heliostats. Solar furnaces are ideal tools to study the chemical, optical, electrical, and thermodynamic properties of materials at high temperatures such as phase studies, vaporization studies, melting behaviours, purification and stabilization of ceramics and refractory materials, crystal growth, specific heat, thermal conductance, etc. Recently many alternative high temperature devices (beyond 2000°C) like induction and arc furnaces, electron beam bombardment apparatus, plasma torch, etc. are used with and without electromagnetic fields in varied atmospheres for the treatment and studies on different materials. However, contamination is inevitable in practically all these heating devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Duwez (1963), ‘High temperature applications of solar Energy’ Chapter 13 from Introduction to the utilization of solar energy (Edited A.M. Zarem and D.D. Erway), McGraw Hill Book Co., Inc., New York.

    Google Scholar 

  2. P. Duwez (1963), ‘Concentration of Solar Energy’ Chapter 6 from Introduction to the utilization of Solar Energy (Edited A.M. Zarem and D.D. Erway), McGraw Hill Book Co., Inc., New York.

    Google Scholar 

  3. G. Benveniste and N.K. Hiester (1956), ‘The solar furnace: New tool for high temperature work’, Mechanical Engineering, 78, 915–920.

    Google Scholar 

  4. T. Sakurai (1977), ‘Solar furnaces’, Chapter 11 from Solar Energy Engineering (Edited A.A.M. Sayigh), Academic Press, Inc., New York.

    Google Scholar 

  5. T. Noguchi (1969), ‘High temperature phase studies with a solar furnace’ Advances in high temperature chemistry, 2, 235–262, Academic Press, Inc., New York.

    Google Scholar 

  6. J.D. Walton, Jr.(1977), ‘High temperature Solar Energy’, Chapter from Energy Technology Handbook (Edited D.M. Considine), McGraw Hill Book Co., Inc., New York.

    Google Scholar 

  7. W.W. Conn (1954), ‘Recent progress in solar furnaces for high temperature research and development work’, J.Frank. Inst., 257(1), 1–12.

    Article  MathSciNet  Google Scholar 

  8. F. Trombe (1961), ‘Use of solar energy for high temperature processing’, Proc. UN. Conf. on New Sources of Energy, Vol.6, PP 100–1–07, Rome, Itlay, August 1961.

    Google Scholar 

  9. F. Trombe (1957), ‘Solar furnaces and their applications’, Solar Energy, 1(2&3), 9–15.

    Article  Google Scholar 

  10. G.L. de Buffon (1747), ‘Invention de miroirs ardens pour bruler grande distance’ Memoire de L’ Academic Royale des Sciences, Paris, page 82.

    Google Scholar 

  11. A.L. Lavoisier (1982), ‘Premier Essai du grand verre ardent’, Memoire de L’ Academic Royale des Sciences, Paris, Page 62.

    Google Scholar 

  12. H. Straubel (1949), ‘Der Sonnen-Schmelzspiefel’, Z.Ang., Physik, 1, 542–545.

    Google Scholar 

  13. P. Duwez, T.E. Tietz, E. Loh, N.K. Hiester (1956), ‘The Operation and use of a lens-type solar furnace’, Trans Conf on Solar Energy, University of Arizona, Tucson, USA.

    Google Scholar 

  14. F. Trombe (1953), ‘L’utilisation de 1’Energie Solaire. Etat actual et Perspenet d’Avenir’ J. des Recbirches du CNRS, Dec. 25, 1953.

    Google Scholar 

  15. A. Guillamonar and G. Betier (1954), ‘Un Essai industrial de captation de 1’ energie solaire Alger’ Proc. World Power Conf., de Janeiro, 1954.

    Google Scholar 

  16. F. Trombe (1958), ‘Les Installations de Montlouis et le four Solaire de 1000 KW d’ Odeillo-Font-Romeu’ Colloques Intenationaux du Centre National de la Recherche Scientifique No. LXXXY, Applications Thermiques de 1’ Energie Solaire dans le Domaine de la Recherche et de 13 Industrie Montlouis, June 23–28, 1958, pp 87–128, CNRS, Paris, 1961.

    Google Scholar 

  17. W.M. Conn (1954), ‘Gesichtpunkte fur den Entwurf von Sonnen Spiegelofen fur Hochtemperaturforchimg und-Entwickling’, A. Aug. Phys., 6, 284–291.

    Google Scholar 

  18. R.K. Cohen and N.K. Hiester (1957), ‘A survey of solar furnace installations in the United States’, Solar Energy, 1(2,3), 105–118.

    Google Scholar 

  19. E. Cotton, W. Lynch, W. Zagieboylo and J.M. Davis (1961), 3Image quality and use of the United States Army Quartermaster Solar Furnace, Proc. UN Conf on New Sources of Energy, Paper No. S/79, Rome, Itlay, 1961.

    Google Scholar 

  20. T. Sakurai, O. Kamado, K. Shishido, and K. Inagaki (1964), ‘Construction of a large solar furnace3, Solar Energy, 8(4), 117–126.

    Article  Google Scholar 

  21. F. Trombe and A. Le Phat Vinh (1973), ‘Thousand KW solar furnace built by the National Center of Scientific Research, in Odeillo (France)’, Solar Energy, 15, 57–61.

    Article  Google Scholar 

  22. T. Noguchi (1983), ‘Solar Energy Research and development in the Solar Research Laboratory, G.I.R.I.N.’, Solar Energy Laboratory, Government Industrial Research Institute, Nagoya, Japan, Report Oct. 1983.

    Google Scholar 

  23. T.S. Lazzlo (1963), ‘Image furnace techniques survey’, Solar Energy, 7(4), 195–201.

    Article  Google Scholar 

  24. J. Bolin, C.J. Tenukest, and C.J. Milner (1961), ‘Plastic replica mirror segments for a solar furnace3, Solar Energy 5(3), 99–102.

    Article  Google Scholar 

  25. F.A. Afzal and J.E. Giutronich (1973), ‘Measurement of electrical conductivity of magnesium oxide single crystal at high temperature using a solar furnace’, Solar Energy, 15, 125–131.

    Article  Google Scholar 

  26. S.N. Vannucci (1973), ‘Experimental determination of optimal size of a heat exchanger for solar furnaces with large aberrations’, Solar Energy, 15, 51–56.

    Article  Google Scholar 

  27. G.G. Drew (1965), ‘Feasibility study of pulse shaping for a solar furnace’, Solar Energy, 9(4), 217–222.

    Article  Google Scholar 

  28. D. Suresh and P.K. Rohtagi)1979), ‘Melting and casting of alloys in a solar furnace’, 23(6), 553–555.

    Google Scholar 

  29. D. Suresh, S. Seshan, and P.K. Rohtagi (1978), ‘Uses of Solar furnaces in foundaries’, Proc. National Solar Energy Convention, Bhavnagar (India), Dec. 20–22, 1978, pp. 413–416.

    Google Scholar 

  30. A.K. Kaddou & A. Abdul-Latif (1969), ‘The feasibility of joining metal using a solar furnace’, Solar Energy, 12, 377–378.

    Article  Google Scholar 

  31. T.S. Lazzlo, F. de Dufour and J. Erdell (1956), ‘A guiding system for solar furnaces’, Trans. Conf. Solar Energy, University of Arizona, Tucson.

    Google Scholar 

  32. T.S. Lazzlo (1957), ‘Temperature and flux versus geometrical perfection’, Solar Energy, 1, 78.

    Article  Google Scholar 

  33. P.D. Jose (1957), ‘The flux through the focal spot of a solar furnace’, Solar Energy, 1(4), 19–22.

    Article  Google Scholar 

  34. P.D. Jose (1957), ‘The design of the heliostat mirror for a solar furnace’, Solar Energy, 1(2,3), 23–27.

    Article  Google Scholar 

  35. G. Benveniste (1955), ‘Solar Energy furnaces’, Standford Research Institute, Menlo Park, California.

    Google Scholar 

  36. W.M. Tuddenham (1957), ‘A solar furnace for research in non-ferrous metallurgy’, Solar Energy, 1(2,3), 48–51.

    Article  Google Scholar 

  37. R. Gardon (1954), ‘A segmented-mirror solar furnace for high intensity thermal radiation studies’, Rev. Sci. Inst. 25, 459.

    Article  Google Scholar 

  38. R.J. Marcus and H.C. Wohlers (1961), ‘Flow systems in the solar furnace and the photolysis of nitrosyl chloride’, Solar Energy, 5(4), 121–128.

    Article  Google Scholar 

  39. E.A. Farber (1964), ‘Crystals of high - temperature materials produced in the solar furnace’ Solar Energy, 8(1), 38–42.

    Article  MathSciNet  Google Scholar 

  40. J.E. Giutronich (1966), ‘Techniques for measuring spectral emittance of solids at high temperatures using a solar furnace’, Solar Energy, 10 (2), 81–85.

    Article  Google Scholar 

  41. F.G. Penniman, P.H. Peter, and J.M. Davies (1966), ‘A flux monitor for the Natick solar furnace’, Solar Energy, 10(1), 23–26.

    Article  Google Scholar 

  42. F.G. Penniman, R.J. Goff, and J.M. Davies(1968), ‘A Pulse shaper for the Natick laboratories solar furnace’, Solar Energy, 12, 85–94.

    Article  Google Scholar 

  43. M.Yu. Borukhov, Yu.Z. Mavashev, and A.Ya Bashnyak (1970), ‘Experience on the Tashkent group in the development of high temperature studies using solar furnaces’, Applied Solar Energy, 6(1), 81–83.

    Google Scholar 

  44. A.A. Annaev and Kh. Rozyev (1970), ‘Design of heliostats for high-temperature solar furnaces’, Applied Solar Energy, 6(5), 56–60.

    Google Scholar 

  45. V.A. Baum, A.A. Annayev, K. Atlyev, and B. Kurbangeldyev (1969), ‘A high-temperature solar furnace’, Applied Solar Energy, 5(2), 71–72.

    Google Scholar 

  46. J. Muster (1962), ‘Pure synthesis numerals produced in the solar furnace’, Solar Energy, 6(4), 129–135.

    Article  Google Scholar 

  47. N.K. Hiester, T.E. Tietz, E. Loh, and P. Duwez (1957), ‘Theoretical Consideration on performance characteristics of solar furnaces’, Jet Propulsion, 27(5), 507–513.

    Google Scholar 

  48. J. Farber and B.I. Davis (1957), ‘Analysis of large aperature parabolic mirrors for solar furnaces’, J. Opt. Soc. Am., 47(3), 216–220.

    Article  Google Scholar 

  49. M.H. Cobble (1961), ‘Theoretical concentrations for solar furnaces’, Solar Energy, 5(2), 61–72.

    Article  Google Scholar 

  50. N. Fukuo and H. Mii (1957), ‘Design problems of the solar furnaces’, Rep. Govt. Industrial Research Institute, Nagoya, Japan, 6(1), 1–9.

    Google Scholar 

  51. O. Kamada (1965), ‘Theoretical concentration and attainable temperature in solar furnaces’, Solar Energy, 8(1), 39–47.

    Article  Google Scholar 

  52. T. Sakurai (1976), ‘Design and fabrication of solar concentrators’ Heliotechnique and Development, Proc. Comples Int. Conf. Dhahran, Saudi Arabia, Nov.2–6, 1975, Vol.1, pp. 267–291 (edited M.A.Kettani and J.E. Soussou).

    Google Scholar 

  53. J.F. Kreider (1979), ‘Medium and high temperature solar processes’, Academic Press, Inc., New York.

    Google Scholar 

  54. R.E. De La Rue, R.E. Loh, J.L. Brenner, and N.K. Hiester (1957), ‘Flux distribution near the focal plane3, Solar Energy, 1(1), 94–98.

    Google Scholar 

  55. A.W. Simon (1959), ‘Calculation of the concentration of energy at points outside the focal spot of a parabolic condenser’, Solar Energy, 3(4), 67–69.

    Article  Google Scholar 

  56. R. M. Bethea, M.T. Barriger, P.F. Williams and S. Chin (1981), ‘Environmental effects on solar concentrator mirrors’, Solar Energy, 27(6), 497–511.

    Article  Google Scholar 

  57. A.B. Meinel and M.P. Meinel (1976), ‘Applied Solar Energy: An introduction’, Addison-Wesley, Reading, pp. 252–258.

    Google Scholar 

  58. Annon, ‘Solar mirrors’ Glaverbel, Chaussee de La Hulpe 166 B-1170 Brussels, Belgium.

    Google Scholar 

  59. P.B. Archibald (1957), ‘A method for manufacturing parabolic mirrors’, Solar Energy, 1(2), 102.

    Article  Google Scholar 

  60. T. Sakurai and K. Shishido (1964), ‘Fabrication of paraboloid mirror segments for a large solar furnace’, Applied Optics, 3(7), 813–816.

    Article  Google Scholar 

  61. F. Trombe (1952), ‘Sur Quelques details de Montage due four solaire semi-industrial de Montlouis’, Comptes Rend, 235, 1211.

    Google Scholar 

  62. A.A. Annaev and Kh. Rozyev (1970), ‘Design of heliostats for high-temperature solar furnaces’, Applied Solar Energy, 6(5), 56–60.

    Google Scholar 

  63. P.D. Jose (1957), ‘The design of the heliostat mirror for a solar furnace’, Solar Energy, 1(2&3), 23–27.

    Article  Google Scholar 

  64. K. Drumkeller, P.D. Bondurant, D.R. Brown, and T.A. Williams (1981), ‘Manufacturing and cost evaluation of second generation heliostats: Vol.1-Analysis and results’, Report No. PNL-3967, Sept.1981 from Battelle Memorial Institute, USA.

    Google Scholar 

  65. T.S. Laszlo, W.F. de Dufour, and J. Erdell (1958), 3A guiding system for solar furnace’, Solar Energy, 2(1), 18–20.

    Article  Google Scholar 

  66. R.N. Schweiger and T.S. Laszlo (1967), ‘A simple guidance system for solar furnaces’, Solar Energy, 11(2), 85–86.

    Article  Google Scholar 

  67. F. Trombe, L. Gion, C. Royere, and J.F. Robert (1973), ‘First results obtained with the 1000 kw solar furnace’, Solar energy, 15, 63–66.

    Article  Google Scholar 

  68. F. Trombe, M. Foex, and C. La Blanchetais (1961), ‘Conditions de Traitement et Measures Physiques dans Les Fours Solaires’, Proc. U.N. Conf. New Sources of Energy, Rome, Itlay, Aug. 1961, Paper No.S/35.

    Google Scholar 

  69. T.S. Laszlo (1961), ‘New Techniques and possibilities in solar furnaces’, Proc. U.N.Conf. New Sources of Energy, Rome, Itlay, Paper No.S/5, Aug. 1961.

    Google Scholar 

  70. P. Glaser (1961), ‘Industrial applications — The challenge to solar furnace Research’, Proc.U.N.Conf. New Sources of Energy, Rome, Italy, Aug. 1961, paper no. S/16.

    Google Scholar 

  71. E. Cotton, W. Lynch, W. Zagieboylo, and J. Davies (1961), ‘Image quality and use of the U.S. Army Quartermaster Solar furnace’, Proc.U.N.Conf. New Sources of Energy, Rome, Italy, Aug.1961, Paper No.S/79.

    Google Scholar 

  72. T.S. Laszlo (1962), ‘Measurement and application of high heat fluxes in a solar furnace’, Solar Energy, 6(2), 69–73.

    Article  MathSciNet  Google Scholar 

  73. R. Gardon (1953), ‘An instrument forthe direct measurement of intense thermal rediation’, Rev. Sci. Inst., 24, 266.

    Article  Google Scholar 

  74. F.G. Penniman, P.H. Peter, and J.M. Davies (1966), ‘A flux monitor for the Natick solar furnace’, Solar Energy, 10(1), 23–26.

    Article  Google Scholar 

  75. W.M. Conn, and J. Braught (1954), ‘Seperation of incident and emitted radiations in a solar furnace by means of rotating sectors’, J. Opt. Soc. Am.,44, 45.

    Article  Google Scholar 

  76. O. Kamada (1964), ‘Method of measuring target temperature in a solar furnace’, Appl. Opt., 3(12), 397–1400.

    Article  Google Scholar 

  77. K. Mann (1965), ‘An infrared solar furnace pyrometer’ Solar Energy, 9, 136.

    Article  Google Scholar 

  78. T. Noguchi, M. Mizuno, and H. Ito (1967), Calorimetric Conf. of Japan, 3rd, Osaka, Nov.1967, AI-13.

    Google Scholar 

  79. J.J. Diamond, and S.J. Schneider (1960), ‘Apparent temperatures measured at melting points of some metal oxides in a solar furnace’ J. Am. Ceram. Soc., 43, 1.

    Article  Google Scholar 

  80. T. Noguchi and T. Kozuka (1966), ‘Temperature and emissivity measurement at 0.65 microns with a solar furnace’, Solar Energy, 10(3), 125–131.

    Article  Google Scholar 

  81. H. Arashi and T. Sakurai (1976), ‘Infrared pyrometry for measuring target temperature in a solar furnace’, High temperatures-High pressures, 8, 349–356.

    Google Scholar 

  82. H.A. Johansen and G. Comenetz (1969), ‘Spectral emittance of tantalum carbide’, High temperature Technology, p. 525, IUPAC Publication, Butterworths, London.

    Google Scholar 

  83. P.E. Glaser (1958), ‘Engineering research with a solar furnace’, Mech. Engg. 80(5), 78–80.

    Google Scholar 

  84. P.E. Glaser and H.H. Blau Jr., ‘A new technique for measuring the spectral emissivity of solids at high temperatures’, Trans. ASME, J.Heat Transfer, 81(C), 92.

    Google Scholar 

  85. T.S. Laszlo, P.J. Sheehan, and R.E. Gannon (1967), ‘Recent results of ablation studies’, Solar Energy, 11, 62.

    Article  Google Scholar 

  86. T.S. Laszlo, R.E. Gannon and P.J. Sheehan (1964), ‘Emittance measurements of solids above 2000 C’, Solar Energy, 8(4), 105–111.

    Article  Google Scholar 

  87. J.E. Guitronich (1966), ‘Techniques for measuring spectral emittance of solids at high temperatures using a solar furnace’, Solar Energy, 10(2), 81–85.

    Article  Google Scholar 

  88. D.M. Shcherbina (1963), ‘Temperature measurement in solar furnaces’, High Temp., 2,84.

    Google Scholar 

  89. D.M. Shcherbina, R.S. Aliev and G.Ya. Bubel (1973), Measurements of the emissivity of materials at high temperatures’, Appl. Solar Energy, 9, 38.

    Google Scholar 

  90. V.V. Yanulis and I.S. Mayauskas (1966), ‘Determination of the spectral reflectance, spectral emissivity, and true temperature of non-transparent solids at high temperatures in Solar furnaces’, Appl. Solar Energy, 2,22.

    Google Scholar 

  91. Yu.Z. Mavashev, L.V. Nechaeva, P.Y. Arifov, A.I. Kulagin, and T.N. Khodzhaeva (1979), ‘Device for measuring the spectral sensitivity of high temperature materials’, Appl. Solar Energy, 15.

    Google Scholar 

  92. T. Yamada and T. Noguchi (1976), ‘Digital pyrometry in a solar furnace’, Solar Energy, 18(6), 533–539.

    Article  Google Scholar 

  93. T. Noguchi, T. Yamada, M. Mizuno, S. Tanemura, and S. Nishimoto (1974), ‘High temperature scanning spectrometer with a solar furnace’, Reports Govt. Ind. Res. Inst., Nagoya, 22(12), 374– 378.

    Google Scholar 

  94. A. Lampicki (1953), ‘The electrical conductivity of magnesia single crystals at high temperatures’, Proc. Phys. Soc, B 66, 281– 283.

    Article  Google Scholar 

  95. S.P. Mitoff (1959), ‘Electrical conductivity of single crystals of MgO’, J. Chem. Physics, 31, 1261.

    Article  Google Scholar 

  96. T.S. Laszlo and P.J. Sheehan (1964), ‘Investigation of Thermal imaging techniques’. Thermal Imaging Techniques (edited by P.E. Glaser and R.F. Walker), p.33, Plenum press, New York.

    Google Scholar 

  97. F.A. Afzal and J.E. Giutronich (1973), ‘Measurement of electrical conductivity of magnesium single crystal at high temperature using a single furnace’, Solar Energy, 15, 125–131.

    Article  Google Scholar 

  98. T. Sakurai, S. Mochizuki and M. Ishigame (1975), ‘Measurement of electrical conductivity of oxides at high temperatures by microwave ellipsometry’, High temp.-High pressure, 7, 411– 417.

    Google Scholar 

  99. R. Chalimin (1954), ‘Dialatometric study of Zirconium silicate in the solar furnace’, Ceram. Alstr. 38e, Feb. 1954.

    Google Scholar 

  100. D. Suresh, W.M.S. Charters, and P.K. Rohatgi (1982), ‘Use of solar furnaces-II-Thermophysical Properties’, Solar Energy, 28(4), 273– 280.

    Article  Google Scholar 

  101. T. Noguchi (1971), High temperature X-ray diffractometery with a solar furnace’. Report No. 205, Colloques Internationaux CNRS, Etude Des Transformations Cristal-lines A Haute Temperature.

    Google Scholar 

  102. D. Kamada, T. Takizawa, and T. Sakurai (1971), ‘A high temperature X-ray diffractiometer using a solar furnace’, Japanese J. Applied Physics, 10(4), 485–490.

    Article  Google Scholar 

  103. I.J. Gruntfest and L.H. Shenker (1958), ‘Behaviour of reinforced plastics at very high temperatures’, Mod. Plastics, 35, 155.

    Google Scholar 

  104. P.J. Sheehan, R.E. Gannon, and T.S. Laszlo (1965), ‘Ablation tests in a solar furnace’, Solar Energy, 9(3), 141–144.

    Article  Google Scholar 

  105. T.S. Laszlo, P.J. Sheehan, and R.E. Gannon (1967), ‘Recent results of ablation studies’, Solar Energy, 11(1), 62–68

    Article  Google Scholar 

  106. Yu.Z. Mavashev (1965), ‘A device for generating thermal sine waves in solar furnaces’ Applied Solar Energy, 1,51.

    Google Scholar 

  107. M.Yu. Borukhov, Yu.Z. Mavashev, and A.Ya. Bashnyak, (1966), ‘Use of solar heat to measure thermal diffusivity’, Applied Solar Energy, 2(6), 28–30.

    Google Scholar 

  108. M.Yu. Borukhov, Yu.Z. Mavashev, and A.Ya. Bashnyak (1970), ‘Experience of the Tashkent group in the development of high-temperature studies using solar furnaces’, Applied Solar Energy, 6(2), 81–83.

    Google Scholar 

  109. D. Suresh, P.K. Rohatgi, and J.P. Coutures (1981), ‘Use of solar furnaces-I: materials research’, Solar Energy, 26(5), 377–390.

    Article  Google Scholar 

  110. T.S. Laszlo (1956), ‘Solar furnace in high temperature research’, Science, 124, 797–800.

    Article  Google Scholar 

  111. T.S. Laszlo, P.J. Sheehan and R.E. Gannon (1967), ‘Thoria single crystals grown by vapor deposition in a solar furnace’, J. Phys., Chem. Solids, 28, 313–316.

    Article  Google Scholar 

  112. T. Sakurai and M. Ishigame (1968), ‘Growth of Nickel oxide crystals by solar furnace fusion’, J. Crystal Growth, 2, 284–286.

    Article  Google Scholar 

  113. T. Sakurai, O. Kamada, and M. Ishigame (1968), ‘Uranium dioxide crystals grown by a solar furnace’, J. Crystal Growth, 2, 326–327.

    Article  Google Scholar 

  114. M. Ishigame and T. Sakurai (1968), ‘Electronic absorption spectrum of Ni2+ in CaO’ J. Phys., Soc. Japan, 25(6), 1629–1632.

    Article  Google Scholar 

  115. Y. Nigara (1968), ‘Measurement of the optical constants of yttrium oxide’, Japan J. Appl. Phys., 7(4), 404–407.

    Article  Google Scholar 

  116. P. Duwez and E. Loh (1957), ‘Phase relationship in the system Zirconia-thoria’, J. Am. Ceram. Soc. 40(9), 321–324.

    Article  Google Scholar 

  117. T. Sakurai and H. Arashi (1975), ‘Phase relationship in the system Zro2 - ThO2’Rev. Int. Htes Temp. et Refract, 12(1), 74–77.

    Google Scholar 

  118. T. Noguchi, M. Mizuno and W.M. Conn (1967), ‘Fundamental research in refractory system with a, solar furnace’, Solar Energy, 11(3&4), 145–152.

    Article  Google Scholar 

  119. T. Noguchi and M. Mizuno (1968), ‘Liquidus Curve measurements in the ZrO2-MgO system with the solar furnace’, Bull. Chem. Soc, Japan, 41, 1583–1587.

    Article  Google Scholar 

  120. A. Rouanet (1971), ‘Contribution a 1’ etude des systems Zirconeoxydes de lonthanides au voisinage de la fusion’, Rev. Int. Htes Temp et Refract 8, 161–180.

    Google Scholar 

  121. T. Noguchi and M. Mizuno (1967), ‘Phase changes in solids measured in a solar furnace’, Solar Energy, 11(1), 56–61.

    Article  Google Scholar 

  122. P.E. Evans (1960), ‘The system UO2-ZrO2’, J.Am. Cerem. Soc, 43(9), 443–447.

    Article  Google Scholar 

  123. T. Noguchi, M. Mizuno and T. Yamada (1970), ‘The liquidus curve of the ZrO2 - Y2 O3 system as measured by a solar furnace’, Bull. Chemical Soc. Japan, 43(8), 2614–2616.

    Article  Google Scholar 

  124. W.M. Conn (1954), ‘Use of solar furnace for studying the system aluminia-silica’, Am.Ceram. Soc. Bull., 33(3), 69–72.

    Google Scholar 

  125. M. Mizuno, T. Yamada, and T. Noguchi (1978), ‘High temperature studies on the system Al2 O3-La2 O3 with a solar furnace’, Int. Solar Energy Cong., New Delhi.

    Google Scholar 

  126. M. Mizuno, T. Yamada and T. Noguchi (1975), ‘The liquidus curve in the system Al2O3-Ga2O3 as measured with a solar furnace’, Rep. Govt. Ind. Res. Inst. Nagoya, 24(6), 184–187.

    Google Scholar 

  127. J.P. Coutures et al (1975), ‘Obtention et estudes des verres refractaries a base d’ alumine et de resquioxyde de neadyne’ Mat. Res. Bull, 10(6), 539–456.

    Article  Google Scholar 

  128. M. Mizuno, T. Yamada, and T. Noguchi (1977), ‘Phase diagram of the system Al2O3-Pr2O3 at high temperatures’, Yogyo KyokaiShi, 85(1), 24–29.

    Google Scholar 

  129. M. Mizumo, T. Yamada, and T. Noguchi (1977), ‘Phase diagram of the system Al2O3-Sm2O3 at high temperatures’, Yogyo Kyokai Shi, 85(8), 374–379.

    Google Scholar 

  130. M. Mizuno, T. Yamada, and T. Noguchi (1977), ‘Phase diagrams of the system Al2O3-Eu2O3 and Al2O3 Gd22O3 at high temperatures’, Yogyo Kyokai Shi, 85(1), 543–548.

    Google Scholar 

  131. M. Mizuno, A. Rouanet, T. Yamada and T. Noguchi (1976), ‘Phase diagram of the system La2O3 - Y2O3 at high temperatures’, Yogyo Khokai Shi, 84(7), 342–347.

    Google Scholar 

  132. F. Sibiaude and M. Foex (1975), ‘Phase et transitions de phases a haute temperature observees dan les systems ThO2-Ln2O3’, J.Nucl. Mater, 56, 229–238.

    Article  Google Scholar 

  133. J.P. Coutures (1978), ‘Solar furnace experiments for thermophysical properties studies of rare-earth oxide MHD materials’, The rare earths in Modern Science and Technology (Edited G.J. McCarthy and J.J. Rhyne) Plenum Press.

    Google Scholar 

  134. M. Yoshimura, J. Coutures and M. Foex (1977), ‘Rapid quenching of melts in the system La2O3-WO3’ J.Mater Sci., 12, 415–417.

    Article  Google Scholar 

  135. M. Yoshimura, F. Sibievde, A. Rouanet, and M. Foex (1976), ‘Identification of binary compounds in the system Ce2O3-WO3’, J. Solid St. Chem. 16(3), 219–232.

    Article  Google Scholar 

  136. G. Benezech, R. Berjoan, J.P. Coutures, B. Grainer, M. Mizuno, and M. Foex (1971), ‘Dispositifs d’ analyse thermique pour 1’ etude des transformations cristallines etdes changements de phase a haute temperature’ Colloques Int. Cent. Nat. Rech. Scient., 205, 57–60.

    Google Scholar 

  137. P. Duwez, F. Odell and F.H. Brown (1952), ‘Stabilization of Zirconium with Calcia and Magnesia’, J. Am. Ceram, Soc., 35, 107.

    Article  Google Scholar 

  138. F. Trombe and M. Foex (1954), ‘Purification de quelques substances refractaires par traitement are four solaire’, Compt. rend, 238, 1419.

    Google Scholar 

  139. J.V. Otts, J.T. Holmes, L.O. Seamons, D.J. Kuchi, L.K. Mathews, D.B. Davis, D.E. Arvizu, D.M. Darsey, and G.E. Brandvold (1978), ‘The USA 5 MW solar thermal test facility’, ISES Int. Solar Energy Congress, New Delhi (India).

    Google Scholar 

  140. K.C. Wang, I.H. Dreger, V.V. Dadape, and J.I. Margrave (1960), ‘Sublimation of Cr2O3 at high temperatures’, Am. Ceram. Soc. Abst. 43, 509.

    Article  Google Scholar 

  141. G. Braver and W. Littke (1960), ‘Uber den schemlzpunkt und die thermische dissoziation von titandioxyd’, J. Inorg. Nucl. Chem., 16, 67.

    Article  Google Scholar 

  142. D. Suresh and P.K. Rohatgi (1978), ‘Potential applications on solar furnace in materials industry’, Proc. 2nd Int. Solar Forum and the XVII Meeting of COMPLES, Hamburg, July 12–14, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Garg, H.P. (1987). Solar Furnaces. In: Advances in Solar Energy Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3795-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3795-6_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8188-7

  • Online ISBN: 978-94-009-3795-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics