Advertisement

Ion Thermochemistry: Summary of the Panel Discussion

  • John E. Bartmess
Part of the NATO ASI Series book series (ASIC, volume 193)

Abstract

There has been some question regarding the original anchoring of the gas phase acidity scale based on ICR measurements1 in the region of the aliphatic alcohols. The data for methanol from this scale differ by 2.2 kcal/mol from the value from the thermochemical cycle based on bond strength and electron affinity.1,2 Moylan and Brauman have questioned the values for the relative acidities of HF, tBuCH2OH, and PhCH2OH.2 The acidity scale presented in 1979 is based on two assumptions. First, the ion temperature is assumed to be equal to the cell temperature of 320K, so that the slope of a plot of the relative ICR acidities vs. the D-EA absolute values (converted to ΔG°acid as in equation 1) should be unity. Secondly, hydrogen fluoride, with the most accurately known acidity from the D-EA thermochemical cycle, is properly related to the rest of the acidity ladder, so that it may serve as a single point anchor for the whole scale.

Keywords

Effective Temperature Hydrogen Fluoride Panel Discussion Flow Tube Thermochemical Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Henchman, M., in “Ion-Molecule Reactions”, Vol. 1, J. Franklin, Ed., Plenum Press: New York, 1972; pp. 154, 162, 238–241.Google Scholar
  2. 2.
    Henchman, M., in “Interactions between Ions and Molecule,” P. Ausloos, Ed., Plenum Press: New York, 1975; pp. 21–23.Google Scholar
  3. 3.
    Meisels, G.G., in “Interactions between Ions and Molecule,” P. Ausloos, Ed., Plenum Press: New York, 1975; p 595.Google Scholar
  4. 4.
    Betowski, D.; MacKay, G.; Payzant, J.; Bohme, D. Can. J. Chem. 1975 53, 2365. See p. 2369.Google Scholar
  5. 5.
    Chesnavich, W.J.; Su, T.; Bowers, M.T.; J. Chem. Phys. 1976 65, 990.CrossRefGoogle Scholar
  6. 6.
    Howorka, F.; Dotan, I.; Fehsenfeld, F.C.; Albritton, D.L. J. Chem. Phys, 1980 73, 759.CrossRefGoogle Scholar
  7. 7.
    Smith, D.; Adams, N.G.; Lindinger, W. J. Chem. Phys. 1981 75, 3365.CrossRefGoogle Scholar
  8. 8.
    Adams, N.G.; Smith, D., in “Reactions of Small Transient Species,” A. Fontijn and M.A.A. Cyyne, Eds., Academic Press: London, 1983, p. 333.Google Scholar
  9. 9.
    Henchman, M.; Smith, D.; Adams, N.G., presented at the 31st Ann. Conference on Mass Spectrom. and Allied Topics, Boston MA, May 8–13 1983.Google Scholar
  10. 10.
    Riveros, J.M.; Jose, S.M.; Takashima, K. Adv. Phys. Org. Chem. 1985 21, 197. See pp. 208–209.Google Scholar
  11. 11.
    Torr, M.R.; Torr, D.G. Rev. Geophys. Space Phys. 1982 20, 91.CrossRefGoogle Scholar
  12. 12.
    Bohringer, H. Chem. Phys. Lett. 1985 122, 185CrossRefGoogle Scholar
  13. Bohringer, H.; Arnold, F. J. Chem. Phys. 1986 84, 1459.CrossRefGoogle Scholar
  14. 13.
    Steel, C.; Starov, V.; Leo, R.; John, P.; Harrison, R.G. Chem. Phys. Lett. 1979 62, 121.CrossRefGoogle Scholar
  15. 14.
    Smith, D.; Adams, N.G., in “ionic Processes in the Gas Phase”, M.A. Almoster Ferreira, Ed., Reidel: Dordrecht, 1984, p. 41.Google Scholar
  16. 15.
    Nibbering, N.M.M., presented at the NATO Advanced Study Institute on Chemistry of Ions in the Gas Phase, Vimero, Portugal, Sept. 617, 1982.Google Scholar
  17. 16.
    Lindinger, W.; Howorka, F.; Lukac, P.; Kuhn, S.; Villinger, H.; Alge, E.; Ramier, P. Phys. Rev. A 1981 23, 2319CrossRefGoogle Scholar
  18. Smith, D.; Adams, N.G. Phys. Rev. A 1981 23, 2327.CrossRefGoogle Scholar
  19. 17.
    McIver, R.T. Jr., Eyler, J.R. J. Am. Chem. Soc. 1971 93, 6335.CrossRefGoogle Scholar
  20. 18.
    Smith, D.; Adams, N.G.Ap. J. 1985 298, 827.CrossRefGoogle Scholar
  21. 19.
    Anincich, V.; Huntress, W.T.; Futrell, J.H. Chem. Phys. Lett 1977 47, 488.CrossRefGoogle Scholar
  22. 20.
    Smith, D.; Adams, N.G. Ap. J. 1980 242, 424.CrossRefGoogle Scholar
  23. 21.
    Huntress, W.T. Jr. Ap. J. Suppl. 33 1977, 495.CrossRefGoogle Scholar
  24. 22.
    Smith, D.; Adams, N.G. Ap. J. 1981 248, 373.CrossRefGoogle Scholar
  25. 23.
    Huntress, W.T. Jr.; Anincich, V. Ap. J. 1976 208, 237.CrossRefGoogle Scholar
  26. 24.
    Huntress, W.T. Jr.; Pinizzotto, R.F. J. Chem. Phys. 1973 59, 4742.Google Scholar
  27. 25.
    Laudenslager, J.B.; Huntress, W.T.; Bowers, M.T. J. Chem. Phys. 1974 61, 4600.CrossRefGoogle Scholar
  28. 26.
    Huntress, W.T. J. Chem. Phys. 1972 56, 5111.CrossRefGoogle Scholar
  29. 27.
    Ferguson, E.E. J. Phys. Chem. 1986 90, 731.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1987

Authors and Affiliations

  • John E. Bartmess
    • 1
  1. 1.Department of ChemistryUniversity of TennesseeKnoxvilleUSA

Personalised recommendations