Skip to main content

Spatio-Temporal Instabilities in Closed and Open Flows

  • Chapter
Book cover Instabilities and Nonequilibrium Structures

Part of the book series: Mathematics and Its Applications ((MAIA,volume 33))

Abstract

A review is given of the general theory describing the linear evolution of spatio-temporal instability waves in fluid media. According to the character of the impulse response, one can distinguish between absolutely unstable (closed) flows and convectively unstable (open) flows. These notions are then applied to several evolution models of interest in weakly nonlinear stability theory. It is argued that absolutely unstable flows, convectively unstable flows and mixed flows exhibit a very different sensitivity to external perturbations. Implications of these concepts to frequency selection mechanisms in mixed flows and the onset of chaos in convectively unstable flows are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Briggs, Electron-Stream Interaction with Plasmas, Research Monograph No, 29, M.I.T. Press, Cambridge, Mass., 1964.

    Google Scholar 

  2. A. Bers. Linear Waves and Instabilities, in Physique des Plasmas, C. DeWitt & J. Peyraud (Ed.), Gordon & Breach, New York, 1975.

    Google Scholar 

  3. G. E. Mattingly & W. O. Criminale. J. Fluid Mech., 51, 233, 1972.

    Article  MATH  Google Scholar 

  4. P. Huerre & P. A. Monkewitz. J. Fluid Mech., 159, 151, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. A. Monkewitz & K. D. Sohn. Absolute Instability in Hot Jets and Their Control, AIAA Paper No. 86–1882, 1986.

    Google Scholar 

  6. P. Huerre. J. Méca Theor. Appl., Special Issue on Two-Dimensional Turbulence, 121–145, 1983.

    Google Scholar 

  7. D. W. Bechert. Excitation of Instability Waves, Proc. Symposium IUTAM Aero et Hydro-Acoustique, Lyon, 1985.

    Google Scholar 

  8. N. Bleistein & R.A. Handelsman. Asymptotic Expansions of Integrals, Holt, Rinehart & Winston, New York, 1975.

    MATH  Google Scholar 

  9. C. M. Bender & S. A. Orszag. Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, New York, 1978,

    Google Scholar 

  10. R. T. Pierrehumbert. J. Atmos. Sci., 41, 2141, 1984.

    Article  Google Scholar 

  11. R. T. Pierrehumbert. Spatially Amplifying Modes of the Charney Baroclinic Instability Problem, Preprint, Princeton University, 1985.

    Google Scholar 

  12. A. C. Newell & J. A. Whitehead. J. Fluid Mech., 38, 279, 1969.

    Article  MATH  Google Scholar 

  13. L. A. Segel. J. Fluid Mech., 38 203, 1969.

    Article  MATH  Google Scholar 

  14. K. Stewartson & J. T. Stuart. J. Fluid Mech., 48, 529, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Pedlosky. J. Atmoz. Sci., 29, 680, 1972.

    Article  Google Scholar 

  16. M. A. Weissman. Phil. Trans. R. Soc. Lond., A290, 639, 1979.

    Article  Google Scholar 

  17. C. G. Lange & A. C. Newell. SIAM J. Appl. Math., 21, 605, 1971.

    Article  MATH  Google Scholar 

  18. W. C. Thacker. Geopkys. Fluid Dyn., 7, 271, 1976.

    Article  Google Scholar 

  19. M. Abramowitz & I. A. Stegun. Handbook of Mathematical Functions, National Bureau of Standards, Washington D.C., 1964.

    MATH  Google Scholar 

  20. F. Roddier. Distributions et Trans formation de Fourier, McGraw-Hill, Paris, 1978.

    Google Scholar 

  21. A. Michalke. J. Fluid Mech., 23, 521, 1965.

    Article  MathSciNet  Google Scholar 

  22. P. A. Monkewitz & P. Huerre. Thys. Fluids, 25, 1137, 1982.

    Article  Google Scholar 

  23. T. F. Balsa. Three-Dimensional Wavepackets and Instability Waves in Free Shear Layers, University of Arizona preprint, 1985.

    Google Scholar 

  24. C. M. Ho & P. Huerre. Ann. Rev. Fluid Mech., 16, 365, 1984.

    Article  Google Scholar 

  25. M. Gaster. J. Fluid Mech., 22, 433, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Gaster. Phys. Fluids, 11, 723, 1968.

    Article  Google Scholar 

  27. M. Gaster. Proc. R. Soc. Lond., A347, 271, 1975.

    Google Scholar 

  28. M. Gaster. The propagation of wavepackets in laminar boundary layers: asymptotic theory for non-conservative wave systems, Preprint, National Maritime Institute, Teddington, England, 1980.

    Google Scholar 

  29. P. G. Drazin & W. H. Reid. Hydrodynamic Stability, Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  30. A. Michalke. Z. Flugwiss, 19, 319, 1971.

    MATH  Google Scholar 

  31. F. H. Busse, in Topics in Applied Physics, 45, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  32. P. Hall. J. Fluid Mech., 130, 41, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. A. Thorpe. J. Fluid Mech., 46, 299, 1971.

    Article  Google Scholar 

  34. A. Michalke. J. Fluid Mech., 19, 543, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  35. W. Koch. J. Sound and Vib., 99, 53, 1985.

    Article  Google Scholar 

  36. L. O. Merkine. Geophys. Astrophys. Fluid Dyn., 9, 129, 1977.

    Article  MATH  Google Scholar 

  37. D. Rockwell & E. Naudascher. Ann. Rev. Fluid Mech., 11, 67, 1979.

    Article  Google Scholar 

  38. L. N. Nguyen. Frequency Selection in Jets and Wakes, Master of Science Thesis, U.C.L.A., Los Angeles, California, 1986.

    Google Scholar 

  39. S. J. Leib & M. E. Goldstein, Phys. Fluids, 29, 952, 1986.

    Article  Google Scholar 

  40. R. J. Deissler. J. Stat. Phys., 40, 371, 1985a.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. J. Deissler. Spatially Growing Waves, Intermittency and Convective Chaos in an Open-Flow System, Los Alamos Report LA-UR-85–4211, 1985b.

    Google Scholar 

  42. R. J. Deissler & K. Kaneko. Velocity-Dependent Liapunov Exponents as a Measure of Chaos for Open Flow Systems, Los Alamos Report LA-UR-85–3249, 1985.

    Google Scholar 

  43. P. Bergé, Y. Pomeau & C. Vidal. L’Ordre dans le Chaos, Herman, Paris, 1984.

    MATH  Google Scholar 

  44. Y. Kuramoto. Prog. Theor. Phys. Suppl., 64, 346, 1978.

    Article  Google Scholar 

  45. H. T. Moon, P. Huerre & L. G. Redekopp. Physica D7, 135, 1983.

    MathSciNet  Google Scholar 

  46. L. R. Keefe. Stud. Appl. Math., 73, 91, 1985.

    MathSciNet  MATH  Google Scholar 

  47. J. T. Stuart & R. C. DiPrimaProc. R. Soc. London, A362, 27, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Huerre, P. (1987). Spatio-Temporal Instabilities in Closed and Open Flows. In: Tirapegui, E., Villarroel, D. (eds) Instabilities and Nonequilibrium Structures. Mathematics and Its Applications, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3783-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3783-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8183-2

  • Online ISBN: 978-94-009-3783-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics