Skip to main content

Physical Interpretation of Optical Bifurcations

  • Chapter
Book cover Instabilities and Nonequilibrium Structures

Part of the book series: Mathematics and Its Applications ((MAIA,volume 33))

  • 276 Accesses

Abstract

It is shown that the bifurcations found in the standard model for optical bistability in a homogeneously broadened unidirectional ring laser, including the bistability threshold and switching points, self-pulsing and the Ikeda instability, can all be understood in terms of a common physical mechanism, the generation and amplification of sidebands by parametric processes. The bifurcation threshold follows from the usual self-oscillation condition in feedback systems. The basic nonlinear processes involved are the production of combination tones and phase-matched forward four-wave mixing. The relevant nonlinear constitutive parameters of the medium are determined. Results previously given in the literature are reviewed and extended to more general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. M. Nussenzveig, in Nonlinear Phenomena in Physics, ed. F. Claro (Springer-Verlag, Berlin, 1985), p. 162.

    Google Scholar 

  2. B. R. Mollow, Phys. Rev. A5, 2217 (1972).

    Google Scholar 

  3. Cf. also S. Haroche and F. Hartmann, Phys. Rev. A6, 1280 (1972).

    Google Scholar 

  4. B. R. Mollow, Phys. Rev. A7, 1319 (1973).

    Google Scholar 

  5. Cf. also S. L. McCall, Phys. Rev. A9, 1515 (1974).

    Google Scholar 

  6. M. Sargent III, Phys. Rep. 43, 223 (1978);

    Article  Google Scholar 

  7. S. Hendow and M. Sargent III, Opt. Commun. 40, 385 (1982);

    Article  Google Scholar 

  8. S. Hendow and M. Sargent III, Opt. Commun. 43, 59 (1982);

    Article  Google Scholar 

  9. S. Hendow and M. Sargent III, J. Opt. Soc. Am. B2, 84 (1985).

    Google Scholar 

  10. L. W. Hillman, R. W. Boyd and C. R. Stroud, Jr., Opt. Lett. 7, 426 (1982);

    Article  Google Scholar 

  11. L. W. Hillman, J. Krasinski, K. Koch and C. R. Stroud, Jr., J. Opt. Soc. Am. B2, 211 (1985).

    Google Scholar 

  12. W. J. Firth, Opt. Commun. 39 343 (1981);

    Article  Google Scholar 

  13. W. J. Firth, E. Abraham and E. M. Wright, Appl. Phys. B28, 170 (1982);

    Google Scholar 

  14. W. J. Firth, E. M. Wright and E. J. D. Cummins, in Optical Bistability 2, eds. C. M. Bowden, H. M. Gibbs and S. L. McCall (Plenum, N. York, 1984), p. 111.

    Google Scholar 

  15. I. Bar-Joseph and Y. Silberberg, Opt. Commun. 48, 53 (1983);

    Article  Google Scholar 

  16. Y. Silberberg and I. Bar-Joseph,a in Optical Bistability 2, eds. C. M. Bowden, H. M. Gibbs and S. L. McCall (Plenum, N. York 1984), p. 61;

    Google Scholar 

  17. Y. Silberberg and I. Bar-Joseph, J. Opt. Soc. Am. B1, 662 (1984).

    Google Scholar 

  18. H. C. Torrey, Phys. Rev. 76, 1059 (1949).

    Article  MATH  Google Scholar 

  19. M. Lax, Phys. Rev. 129, 2342 (1963);

    Article  MathSciNet  Google Scholar 

  20. M. Lax, Phys. Rev. 157, 213 (1967).

    Article  MathSciNet  Google Scholar 

  21. B. R. Mollow, Phys. Rev. 188, 1969 (1969).

    Article  Google Scholar 

  22. F. Y. Wu, S. Ezekiel, M. Ducloy and B. R. Mollow, Phys. Rev. Lett. 38, 1077 (1977).

    Article  Google Scholar 

  23. J. A. Armstrong, N. Bloembergen, J. Ducuing and P. S. Pershan, Phys. Rev. 227, 1918 (1962).

    Article  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Mechanics (Addison-Wesley, Reading, Mass., 1960).

    MATH  Google Scholar 

  25. N. Bloembergen, Am. J. Phys. 35, 989 (1967).

    Article  Google Scholar 

  26. D. C. Hanna, M. A. Yuratich and D. Cotter, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, Berlin, 1979).

    Google Scholar 

  27. N. Bloembergen and P. Lallemand, Phys. Rev. Lett. 16, 81 (1966).

    Article  Google Scholar 

  28. R. Y. Chiao, P. L. Kelley and E. Garmire, Phys. Rev. Lett. 17, 1158 (1966);

    Article  Google Scholar 

  29. R. W. Boyd, M. G. Raymer, P. Narum and D. J. Harter, Phys. Rev. A24, 411 (1981).

    Google Scholar 

  30. R. L. Carman, R. Y. Chiao and P. L. Kelley, Phys. Rev. Lett. 17, 1281 (1966);

    Article  Google Scholar 

  31. A. C. Tam, Phys. Rev. A19, 1971 (1979);

    Google Scholar 

  32. D. J. Harter, P. Narum, M. G. Raymer and R. W. Boyd, Phys. Rev. Lett. 46, 1192 (1981).

    Article  Google Scholar 

  33. P. Coullet,a in Nonlinear Phenomena in Physics, ed. F. Claro (Springer-Verlag, Berlin, 1985), p. 16.

    Google Scholar 

  34. M. Gronchi, V. Benza, L. A. Lugiato, P. Meystre and M. Sargent III, Phys. Rev. A24, 1419 (1981).

    Google Scholar 

  35. W. E. Lamb, Jr., Phys. Rev. 134 A1429 (1964).

    Article  Google Scholar 

  36. K. Ikeda, Opt. Commun. 30, 257 (1979);

    Article  Google Scholar 

  37. K. Ikeda, H. Daido and O. Akimoto, Phys. Rev. Lett. 45, 709 (1980).

    Article  Google Scholar 

  38. H. J. Carmichael, R. R. Snapp and W. C. Schieve, Phys. Rev. A26, 3408 (1982);

    Google Scholar 

  39. J. Englund, R. R. Snapp and W. C. Schieve,a in Progress in Optics XXI, ed E. Wolf (Elsevier, Amsterdam, 1984), p. 355.

    Chapter  Google Scholar 

  40. K. Ikeda, K. Kondo and O. Akimoto, Phys. Rev. Lett. 49, 1467 (1982).

    Article  Google Scholar 

  41. H. J. Carmichael, Phys. Rev. Lett. 52, 1292 (1984);

    Article  MathSciNet  Google Scholar 

  42. H. J. Carmichael, Opt. Commun. 53, 122 (1985).

    Article  Google Scholar 

  43. N. B. Abraham, L. A. Lugiato, P. Mandel, L. M. Narducci and D. Bandy, J. Opt. Soc. Am. B2, 35 (1985).

    Google Scholar 

  44. N. B. Abrham, L. A. Lugiato and L. M. Narducci, J. Opt. Soc. Am. B2, 7 (1985).

    Google Scholar 

  45. L. W. Casperson,a in Laser Physics, eds. J. Harvey and D. Walls (Springer-Verlag, Berlin 1983), p. 88.

    Chapter  Google Scholar 

  46. M. Sargent III, M. S. Zubairy and F. de Martini, Opt. Lett. 8, 76 (1983);

    Article  Google Scholar 

  47. M. Sargent III, D. A. Holm and M. S. Zubairy, Phys. Rev. A31, 3112 (1985);

    Google Scholar 

  48. S. Stenholm, D. A. Holm and M. Sargent III, Phys. Rev. A31, 3124 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Nussenzveig, H.M. (1987). Physical Interpretation of Optical Bifurcations. In: Tirapegui, E., Villarroel, D. (eds) Instabilities and Nonequilibrium Structures. Mathematics and Its Applications, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3783-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3783-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8183-2

  • Online ISBN: 978-94-009-3783-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics