Skip to main content

Large Scale Instabilities of Cellular Flows

  • Chapter
Instabilities and Nonequilibrium Structures

Part of the book series: Mathematics and Its Applications ((MAIA,volume 33))

Abstract

The close analogy between instabilities in nonlinear systems driven far from equilibrium, and equilibrium phase transitions in condensed-matter physics, is now well documented experimentally as well as theoretically. This idea was fathered by Landau [1] and developped by several authors in the context of hydrodynamics [2], electric circuits, semiconductors, nonlinear optics and chemical instabilities [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Landau, “On the theory of phase transitions”, “On the problem of turbulence”, Collected Papers of L. Landau, Gordon and Breach (1967).

    Google Scholar 

  2. For a review, see P.H. Coullet and E.A. Spiegel, SIAM J. Appl. Math. 43, 775–821 (1983).

    MathSciNet  Google Scholar 

  3. For a review, see A. Nitzan, P. Ortoleva, J. Deutch and J. Ross, J. Chem. Phys. 61, 1056–1074 (1974).

    Article  Google Scholar 

  4. For a review, see J.P. Gollub and H.L. Swinney, Hydrodynamic Stability and the Transition to Turbulence, Topics in applied physics 45, Springer Verlag (1981)

    Google Scholar 

  5. J.E. Wesfreid and S. Zaleski, Cellular Structures in Instabilities. Lecture notes in physics, Springer Verlag (1984).

    Book  Google Scholar 

  6. A.C. Newell, Lectures in Applied Math. 15, 157–163 (1974).

    MathSciNet  Google Scholar 

  7. G.B. Witham, Linear and Nonlinear Waves, Wiley (1974).

    Google Scholar 

  8. D.J. Benney and A.C. Newell, J. Math. Phys. 46, 133–139 (1967).

    MathSciNet  MATH  Google Scholar 

  9. P. Ortoleva and J. Ross, J. Chem. Phys. 58, 5673–5680 (1973).

    Article  Google Scholar 

  10. L.N. Howard and N. Kopell, Stud. Appl. Math. 56, 95–145 (1977).

    MathSciNet  MATH  Google Scholar 

  11. Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 55, 356–369 (1976).

    Article  Google Scholar 

  12. Y. Pomeau and P. Manneville, J. Physique Lettres 40, 609–612(1979)

    Article  MathSciNet  Google Scholar 

  13. M.C. Cross, Phys. Rev. A27, 490–498 (1983).

    Google Scholar 

  14. M.C. Cross and A.C. Newell, Physica 10D, 229–328 (1984).

    MathSciNet  Google Scholar 

  15. P. Tabeling, J. Physique Lettres 44, 665–672 (1983).

    Article  Google Scholar 

  16. H. Brand and M.C. Cross, Phys. Rev. A27, 1237–1239 (1983).

    Google Scholar 

  17. H. Brand, Prog. Theor. Phys. 71, 1096–1099 (1984).

    Article  Google Scholar 

  18. P.W. Anderson, Basic Notions of Codensed Matter Physics, Frontiers in Physics, Benjamin (1984).

    Google Scholar 

  19. Y. Kuramoto, Prog. Theor. Phys. 71, 1182–1196 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press (1961).

    MATH  Google Scholar 

  21. J. Swift and P.C. Hohenberg, Phys. Rev. A15, 319–328 (1979).

    Google Scholar 

  22. A.C. Newell and J.A. Whitehead, J. Fluid Mech. 38, 279–303 (1969).

    Article  MATH  Google Scholar 

  23. L.A. Segel, J. Fluid Mech. 38, 203–224 (1969).

    Article  MATH  Google Scholar 

  24. F. Busse, J. Fluid Mech. 52, 97–112 (1972).

    Article  MATH  Google Scholar 

  25. E.D. Siggia and A. Zippelius, Phys. Rev. Lett. 47, 835–838 (1981).

    Article  Google Scholar 

  26. R.M. Clever and F.H. Busse, J. Fluid. Mech. 65, 625–645 (1974).

    Article  MATH  Google Scholar 

  27. B.F. Edwards and A.L. Fetter, Phys. Fluids 27, 2795–2802 (1984).

    Article  MATH  Google Scholar 

  28. S. Fauve, Instabilités convectives et équations d’amplitude, Ecole de Goutelas, Observatoire de Meudon (1983).

    Google Scholar 

  29. P. Coullet and S. Fauve, Phys. Rev. Lett. 55, 2857–2859 (1985).

    Article  Google Scholar 

  30. A. Schlüter, D. Lortz, and F. Busse, J. Fluid Mech. 23, 129–144 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  31. V.I. Arnold, Supplementary Chapters to the Theory of Ordinary differential Equations, Nauka (1978).

    Google Scholar 

  32. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical System and Bifurcation of Vector Fields, Springer Verlag (1984).

    Google Scholar 

  33. Note that in this model, the large scale horizontal velocity field should be of the form Q(z) ψ;(Y,T), where Q(z) satisfies the boundary conditions.

    Google Scholar 

  34. E.W. Bolton, F.H. Busse and R.M. Clever, Preprint (1985).

    Google Scholar 

  35. F.B. Lipps, J. Fluid Mech. 75, 113–148 (1976).

    Article  Google Scholar 

  36. J.B. McLaughlin and S.A. Orszag, J. Fluid. Mech. 122 (1982).

    Google Scholar 

  37. G.E. Willis and J.W. Deardorff, J. Fluid Mech. 44, 661–672 (1970).

    Article  Google Scholar 

  38. A.R. Bishop, J.A. Krumhansl and S.E. Trullinger, Physica 1D, 1–44 (1980).

    MathSciNet  Google Scholar 

  39. G.B. Stokes, Trans. Camb. Phil. Soc. 8441, 197 (1847).

    Google Scholar 

  40. T.B. Benjamin and J.E. Feir, J. Fluid Mech. 27, 417–430 (1967).

    Article  MATH  Google Scholar 

  41. J.T. Stuart and R.C. Di Prima, Proc. Roy. Soc. A362, 27–41 (1978).

    Google Scholar 

  42. R.C. Di Prima and R.N. Grannick, IUTAM Symp. on Instabilities of Continuous Systems, H. Leipholtz ed. Springer Verlag (1971).

    Google Scholar 

  43. C.S. Bretherton and E.A. Spiegel, Phys. Lett. 96A, 152–156 (1983).

    Google Scholar 

  44. Y. Demay and G. Iooss, J. Mécanique (numéro spécial 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Fauve, S. (1987). Large Scale Instabilities of Cellular Flows. In: Tirapegui, E., Villarroel, D. (eds) Instabilities and Nonequilibrium Structures. Mathematics and Its Applications, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3783-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3783-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8183-2

  • Online ISBN: 978-94-009-3783-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics