Skip to main content

Optical Properties of Large Molecules in the Frenkel Exciton Approximation

  • Chapter
Understanding Molecular Properties
  • 215 Accesses

Abstract

The Frenkel exciton approximation provides a means for representing the excited states of large, weakly-interacting systems in terms of the properties of their subunits. Frenkel exciton theory is reviewed, together with its application to the optical properties of large molecules and complexes, A general method is presented for calculating the absorption and circular dichroism spectra of large systems within the Frenkel exciton picture. It is shown that for systems consisting of weakly-interacting identical subunits, the rotatory power of a transition is proportional to tr[H F], where H is the interaction Hamiltonian and F is an “optical matrix” constructed from the transition dipole moments and positions of the individual subunits. Similarly it is shown that the absorption maximum is shifted in frequency by an amount which is proportional to tr[H G]/tr[G], where G is also constructed from the subunit transition dipole moments. The general theory is illustrated by a discussion of the optical properties of helical polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Frenkel, Phys. Rev. 37, 1276 (1931).

    Article  Google Scholar 

  2. A.S. Davydov, “Theory of Molecular Excitons”, (translated by M. Kasha and M. Oppenheimer Jr.) McGraw-Hill, New York (1962).

    Google Scholar 

  3. R.S. Knox, “Theory of Excitons”, Academic Press, New York (1963).

    Google Scholar 

  4. M. Kasha and B. Pullman, Eds., “Horizons of Biochemistry”, Academic Press, New York (1962).

    Google Scholar 

  5. M. Kasha, Rev. Mod. Phys. 31, 162 (1959).

    Article  CAS  Google Scholar 

  6. M. Kasha, Radiat. Res. 20, 55 (1963).

    Article  CAS  Google Scholar 

  7. J. Avery and R. Mason, in “Quantum Aspects of Polypeptides and Polynucleotides”, M. Weisbluth Ed., Wiley-Interscience, New York, 1964).

    Google Scholar 

  8. J. Avery and R. Mason in “Physical Processes in Radiation Biology”, L.G. Augenstein, R. Mason and B. Rosenberg Eds., Academic Press, (1964).

    Google Scholar 

  9. J. Avery in “Electronic Aspects of Biochemistry”, B. Pullman, Ed., Academic Press, New York (1964).

    Google Scholar 

  10. R. Sibley, J. Jortner, M.T. Vala, Jr., and S.A. Rice, J. Chem. Phys. 42, 2948 (1965).

    Article  Google Scholar 

  11. J. Avery, “The Quantum Theory of Atoms, Molecules and Photons”, McGraw-Hill (1972), pages 196–200.

    Google Scholar 

  12. W. Moffitt, J. Chem. Phys. 25, 467 (1956).

    Article  CAS  Google Scholar 

  13. W. Moffitt, Proc. Natl. Acad. Sci. U.S.A. 42, 736 (1956).

    Article  CAS  Google Scholar 

  14. W. Moffitt, D.D. Fitts and J.G. Kirkwood, Proc. Natl. Acad. Sci. U.S.A. 43, 723 (1957).

    Article  CAS  Google Scholar 

  15. I. Tinoco Jr., R.W. Woody and D.F. Bradley, J. Chem. Phys. 38, 1317 (1963).

    Article  CAS  Google Scholar 

  16. J. A. Schellman and P. Oriel, J. Chem. Phys. 37, 2114 (1962).

    Article  CAS  Google Scholar 

  17. R.W. Woody, J. Chem. Phys. 49, 4797 (1968).

    Article  CAS  Google Scholar 

  18. R.W. Woody and I. Tinoco, Jr., J. Chem. Phys. 46, 4927 (1967).

    Article  CAS  Google Scholar 

  19. R. Mandel and G. Holzwarth, J. Chem. Phys. 57, 3469 (1972).

    Article  CAS  Google Scholar 

  20. I. Tinoco, Jr., Nature 230, 362 (1971).

    Article  CAS  Google Scholar 

  21. I. Tinoco, Jr., Adv. Chem. Phys. 4, 113 (1962).

    Article  Google Scholar 

  22. I. Tinoco, Jr., J. Am. Chem. Soc. 82, 4785 (1960).

    Article  CAS  Google Scholar 

  23. I. Tinoco, Jr., and D. Keller, J. Phys. Chem. 87, 2915 (1983).

    Article  CAS  Google Scholar 

  24. I. Tinoco, Jr., J. Chem. Phys. 33, 1332 (1960).

    Article  CAS  Google Scholar 

  25. I. Tinoco, Jr., J. Chem. Phys. 34, 1067 (1961).

    Article  CAS  Google Scholar 

  26. W. Rhodes, J. Chem. Phys. 37, 2433 (1962).

    Article  CAS  Google Scholar 

  27. J.A. Schellman, J. Chem. Phys. 58, 2882 (1982).

    Article  Google Scholar 

  28. J. A. Schellman and W.J. Becktel, Biopolymers 22, 171 (1983).

    Article  CAS  Google Scholar 

  29. A.E. Hansen and T. Bouman, Adv. Chem. Phys. 44, 545 (1980).

    Article  CAS  Google Scholar 

  30. H.O. Pamuck, A.M. Dougherty and W.C. Johnson, Biopolymers 24, 1337 (1985).

    Article  Google Scholar 

  31. A.E. Hansen and J. Avery, Chem. Phys. Lett. 13, 396 (1972).

    Article  CAS  Google Scholar 

  32. A.E. Hansen and J. Avery, Chem. Phys. Lett. 17, 561 (1972).

    Article  CAS  Google Scholar 

  33. A.E. Hansen and J. Avery, Ann. Soc. Sci. Bruxelles T89, 274 (1975).

    Google Scholar 

  34. R.W. Woody, Biopolymers 22, 189 (1983).

    Article  CAS  Google Scholar 

  35. W. Moffitt and A. Moscowitz, J. Chem. Phys. 30, 648 (1959).

    Article  CAS  Google Scholar 

  36. J. Avery and A.E. Hansen, Ann. Soc. Sci. Bruxelles T89, 253 (1975).

    Google Scholar 

  37. J. Avery and S. Hvidt, Int. J. Quantum Chem. 29, 497 (1986).

    Article  CAS  Google Scholar 

  38. J. Avery, “Creation and Annihilation Operators”, McGraw-Hill, (1976).

    Google Scholar 

  39. A. Elliott and B.R. Malcolm, Proc. Roy. Soc. (London), A249, 30 (1959).

    Google Scholar 

  40. B. Jirgensons in “Optical Activity of Proteins and other Macromolecules, 2nd Ed.”, Springer Verlag, Berlin (1973)

    Google Scholar 

  41. L.M. Riddiford, J. Biol. Chem. 241, 2792 (1966).

    CAS  Google Scholar 

  42. F.H.C. Crick, Acta Cryst. 6, 689 (1953).

    Article  CAS  Google Scholar 

  43. S. Hvidt, M.E. Rodgers and W.F. Harrington, Biopolymers 24, 1647 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company

About this chapter

Cite this chapter

Avery, J., Hvidt, S. (1987). Optical Properties of Large Molecules in the Frenkel Exciton Approximation. In: Avery, J., Dahl, J.P., Hansen, A.E. (eds) Understanding Molecular Properties. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3781-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3781-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8182-5

  • Online ISBN: 978-94-009-3781-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics