Skip to main content

Particle Motions in the Earth’s Magnetosphere

  • Conference paper
  • First Online:
Solar-Terrestrial Physics/1970

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 29))

Abstract

Two specific regions of the magnetosphere are considered; (1) the magnetospheric tail, the region characterized by a sharp break of magnetic field lines at the neutral sheet, (i.e. lines that close an indefinite but large distance from the Earth) and (2) the magnetospheric core, the region with smooth closed lines of force. The maximum possible rate of magnetic field annihilation in the magnetospheric tail is estimated, using a hydrodynamic approximation and taking into account the anisotropy of the plasma pressure. This annihilation rate may be expressed in terms of an electric field which is directed from the morning side of the magnetosphere to the evening side. The motion of superthermal particles with the ‘one-particle approximation’ is also considered.

The magnetic drift shells in the magnetospheric core are calculated. In the outer distant regions of the core, the shells are split, according as the pitch angle of the particles is greater or smaller than a critical value, and form two branches, extending into the northern and southern hemisphere, respectively. The totality of the shells which intersect the boundary of the magnetospheric core constitutes the region of quasi-trapped particles.

One aspect of particle diffusion over magnetic shells (neglecting the splitting of shells) is also considered, that is, the shape of the stable distribution function for protons which is the stationary solution of the diffusion equation, without any losses. This case is actually realized beyond the intensity maximum of proton belt. Comparison with observation shows a sharp discrepancy between the observed profiles of proton intensity near the maximum of solar activity and those predicted by the generally accepted theory of diffusion. This discrepancy may be eliminated if one takes into account the effect of the gas pressure of trapped protons on particle motions over the shells (spontaneous convection), together with the effect of external forces in the form of electric fields and of azimuthally asymmetric pulses of the magnetic field (forced convection); for this, the relation of coefficients in the Fokker-Planck equation is essentially changed. The result is independent of the specific form of the diffusion coefficient. The above-mentioned problems have been considered in more detail elsewhere (Shabansky,1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseev, I.I., Kropotkin, A. P.: 1970, Geomagnetizm i Aeronomiya, in press.

    Google Scholar 

  • Alekseev, I.I., Shabansky, V. P.: 1970, paper at Leningrad STP Symposium.

    Google Scholar 

  • Antonova, A. E.: 1969, Thesis, Inst. Nuclear Physics, Moscow State Univ.

    Google Scholar 

  • Antonova, A. E., Eroshenko, E.: 1970, paper at Leningrad STP Symposium.

    Google Scholar 

  • Antonova, A. E., Shabansky, V. P.: 1968a, ‘On the Structure of the Geomagnetic Field at Large Distances from the Earth’, Geomagnetizm i Aeronomiya 8, 801.

    Google Scholar 

  • Antonova, A. E., Shabansky, V. P.: 1968b, ‘On the Motion of Charged Particles in the Geomagnetic Field’, Izv. Akad. Nauk S.S.S.R. (ser. fiz.) 32,1802.

    Google Scholar 

  • Antonova, E. A., Ershkovich, A. I., Shabansky, V. P.: 1965, ‘Formation of the Radiation Belts as Result of Particle Drift into the Depth of the Magnetosphere’, in Issledovaniya kosmicheskiyeprostranstva, Izd. Akad. Nauk S.S.S.R.

    Google Scholar 

  • Davis, L. J., Chang, D. B.: 1962, ‘On the Effect of Geomagnetic Fluctuations of Trapped Particles’, J. Geophys. Res. 67, 2169.

    Article  ADS  Google Scholar 

  • Davis, L. R., Williamson, J. M.: 1963, ‘Low-Energy Trapped Protons’, Space Res. 3, North- Holland Publ. Co., Amsterdam, p. 365.

    Google Scholar 

  • Davis, L. R., Hoffman, R., Williamson, J. M.: 1964, ‘Observations of Protons Trapped above 2 Earth Radii (Abstract)’, Trans. Am. Geophys. Union 45, 84.

    Google Scholar 

  • Dungey, J. W.: 1965, ‘Effects of Electromagnetic Perturbations of Particles Trapped in Radiation Belts’, Space Sci. Rev. 4, 199.

    Article  ADS  Google Scholar 

  • Ershkovich, A. I., Shalimov, V. P.: 1966, ‘On Anomalous Diffusion of Charged Particles in the Earth’s Magnetosphere’, Kosmicheskiye Issledovaniya 4, 789.

    Google Scholar 

  • Fairfield, D. H.: 1968, ‘Average Magnetic Field Configuration of the Outer Magnetosphere’, J. Geophys. Res. 73, 7329.

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G.: 1965, ‘Effects of Time-Dependent Electric Field on the Geomagnetically Trapped Radiation’, J. Geophys. Res. 70, 2503.

    Article  ADS  MathSciNet  Google Scholar 

  • Fälthammar, C.-G.: 1966, ‘On the Transport of Trapped Particles in the Outer Magnetosphere’, J. Geophys. Res. 71, 1487.

    Article  ADS  Google Scholar 

  • Fälthammar, C.-G.: 1967, ‘Radial Diffusion by Violation of the Third Invariant’, Presented at the 2nd IRI Adv. Study Institute, Earths Particles and Fields, Freising, Germany.

    Google Scholar 

  • Feldstein, Y. I., Starkov, G. V.: 1969, Planetary Space Sci. 18, 501.

    Article  ADS  Google Scholar 

  • Frank, L. A.: 1965, ‘On the Local-Time Dependence of Outer Radiation Zone Electron (E e>1.6 MeV) Intensities near the Magnetic Equator’, J. Geophys. Res. 70, 4131.

    Article  ADS  Google Scholar 

  • Gold, T.: 1959, ‘Plasma and Magnetic Fields in the Solar System’, J. Geophys. Res. 64, 1665.

    Article  ADS  Google Scholar 

  • Gold, T.: 1962, ‘The Propagation of Solar Particles to the Earth’, Phys. Soc. Japan 17, Suppl. A-II, 600.

    Article  Google Scholar 

  • Gubar, J. I., Shabansky, V. P.: 1969, ‘Radial Profile of the Proton Belt’, Izv. Akad. Nauk S.S.S.R., in press.

    Google Scholar 

  • Herlofson, N.: 1960, ‘Diffusion of Particles in the Earth’s Radiation Belts’, Phys. Rev. Letters 5, 414.

    Article  ADS  Google Scholar 

  • Hess, W. N.: 1966, ‘Source of the Outer-Zone Protons’, in Radiation Trapped in the Earth’s Magnetic Field(ed. by B. M. McCormack), D. Reidel Publ. Co., Dordrecht-Holland, p. 352.

    Chapter  Google Scholar 

  • Hoffman, R. A., Bracken, P. A.: 1965, J. Geophys. Res. 70, 3541.

    Article  ADS  Google Scholar 

  • Hones, E. W.: 1963, ‘Motions of Charged Particles in the Earth’s Magnetosphere’, J. Geophys. Res. 68, 1209.

    Article  ADS  Google Scholar 

  • Hones, E. W.: 1970, private communication.

    Google Scholar 

  • Ivanenko, I. P., Shabansky, V. P.: 1961, ‘On Particle Acceleration in the Outer Earth’s Radiation Belt’, Geomagnetizm i Aeronomiya 1, 888.

    Google Scholar 

  • Kadomtsev, B. B.: 1958a, ‘Magnetic Traps with a “corrugated” field’, Fizika plazmy i problem upra- vlyay emykh termoreaksyi, Akad. Nauk S.S.S.R.

    Google Scholar 

  • Kamontsev, B. B.: 1958b, ‘On the Convective Instability of Plasma’ (see previous entry).

    Google Scholar 

  • Kellogg, P. J.: 1959, ‘Van Allen Radiation of Solar Origin’, Nature 183, 1295.

    Article  ADS  Google Scholar 

  • McDiarmid, I. B., Burrows, J. R.: 1968, Can. J. Phys. 46, 49.

    Article  ADS  Google Scholar 

  • Mcllwain, C. E.: 1961, ‘Coordinates for Mapping the Distribution of Geomagnetically Trapped Particles’, J. Geophys. Res. 66, 3681.

    Article  ADS  Google Scholar 

  • Mead, G. D.: 1964, ‘Deformation of the Geomagnetic Field by the Solar Wind’, J. Geophys. Res. 69, 1181.

    Article  ADS  Google Scholar 

  • Mihalov, J. D., White, R. S.: 1966, ‘Low-Energy Proton Radiation Belts’, J. Geophys. Res. 71, 2207.

    Article  ADS  Google Scholar 

  • Murayama, J.: 1966, ‘Spatial Distribution of Energetic Electrons in the Geomagnetic Tail’, Preprint EFJNS 66–64.

    Google Scholar 

  • Nakada, M. P., Mead, G. D.: 1965, ‘Diffusion of Protons in the Outer Magnetosphere’, J. Geo- phys. Res. 70, 4777.

    Article  ADS  Google Scholar 

  • Nakada, M. P., Dungey, J. W., Hess, W. N.: 1965, ‘On the Origin of the Outer Belt of Protons’, J. Geophys. Res. 70, 3529.

    Article  ADS  Google Scholar 

  • Nishida, A., Cahill, L. J.: 1964, ‘Sudden Impulses in the Magnetosphere Observed by Explorer 12’, J. Geophys. Res. 69, 2243.

    Article  ADS  Google Scholar 

  • Northrop, T., Teller, A.: 1960, ‘Stability of Adiabatic Motion of Charged Particles in the Earth’s Magnetic Field’, Phys. Rev. 117, 215.

    Article  ADS  MathSciNet  Google Scholar 

  • Parker, E. N.: 1960, ‘Geomagnetic Fluctuations and the Form of the Outer Zone of the Van Allen Radiation Belt’, J. Geophys. Res. 65, 3117.

    Article  ADS  Google Scholar 

  • Petschek, H. E.: 1963, ‘Magnetic Field Annihilation’, NASA Sp.-50, AAS-NASA Symp. on the Physics of Solar Flares, NASA Goddard SFC.

    Google Scholar 

  • Piddington, J. H.: 1967, ‘Magnetic Field Annihilation in the Current Pinches’, Planetary Space Sci. 15, 733.

    Article  ADS  Google Scholar 

  • Roederer, J. G.: 1967, ‘On the Adiabatic Motion of Energetic Particles in a Model Magnetosphere’, J. Geophys. Res. 72, 981.

    Article  ADS  Google Scholar 

  • Roederer, J. G.: 1969, ‘Quantitative Models of the Magnetosphere’, Rev. Geophys. 7, 77.

    Article  ADS  Google Scholar 

  • Sauer, H.H.: 1970, paper at the Leningrad STP Symposium.

    Google Scholar 

  • Savin, B. I.: 1964, Thesis, NIIAF, Moscow State Univ.

    Google Scholar 

  • Shabansky, V. P.: 1961a, ‘Particle Acceleration in Crossing the Shock Front of a Hydromagnetic Wave’, Zhurn. Eksp. i. Teor. Fiz. 41, 1107.

    Google Scholar 

  • Shabansky, V. P.: 1961b, ‘On the Violation of the Adiabatic Invariant and Particle Acceleration in Magnetic Fields and Shock Waves’, Geomagnetizm i Aeronomiya 1, 483.

    Google Scholar 

  • Shabansky, V. P.: 1962, ‘On the Origin of the Outer Radiation Belt due to Penetration by the Interplanetary Plasma into the Geomagnetic Field’ ( Paper at Cosmic Ray Conf., Yakutsk).

    Google Scholar 

  • Shabansky, V. P.: 1964, ‘Radial Drift of Radiation Belt Particles due to Hydromagnetic Waves in the Magnetosphere’, Geomagnetizm i Aeronomiya 4, 1108.

    Google Scholar 

  • Shabansky, V. P.: 1965a, ‘On the First Phase of a Magnetic Storm’, Space Res. 5, North-Holland Publ. Co., Amsterdam, p. 125.

    Google Scholar 

  • Shabansky, V. P.: 1965b, ’RadiationBelts; Geomagnetizm i Aeronomiya 5, 969.

    Google Scholar 

  • Shabansky, V. P.: 1966a, ‘Interaction of Energetic Charged Particles with Hydromagnetic Waves’, Geomagnetizm i Aeronomiya 6, 472.

    Google Scholar 

  • Shabansky, V. P.: 1966b, ‘Electromagnetic Phenomena in the Earth’s Environment and Radiation Belts’, Thesis, Inst. Nuclear Phys., Moscow State Univ.

    Google Scholar 

  • Shabansky, V. P.: 1968, ‘Magnetospheric Processes and Related Geophysical Phenomena’, Space Sci. Rev. 8, 366.

    Article  ADS  Google Scholar 

  • Shabansky, V. P .: 1970, ‘Some Magnetospheric and Ionospheric Processes’, Space Sci. Rev., in press.

    Google Scholar 

  • Shabansky, V. P., Antonova, A. E.: 1968, Topology of Particle Drift Shells in the Magnetosphere’, Geomagnetizm i Aeronomiya 8, 983.

    Google Scholar 

  • Shabansky, V. P., Kasimov, U.: 1970, Geomagnetizm i Aeronomiya, in press.

    Google Scholar 

  • Speiser, T. W.: 1965a, ‘Particle Trajectories on Model Current Sheets. I. Analytical Solution’, J. Geophys. Res. 70, 4219.

    Article  ADS  Google Scholar 

  • Speiser, T. W.: 1965b, ‘Particle Trajectories in a Model Current Sheet Based, on the Open Model of the Magnetosphere with Applications to Auroral Particles’, J. Geophys. Res. 70, 1717.

    Article  ADS  Google Scholar 

  • Tverskoy, B. A.: 1964 and 1965, ‘Dynamics of the Earth’s Radiation Belts. I and II’, Geomagnetizm i Aeronomiya 4, 224, and 436.

    Google Scholar 

  • Tverskoy, B. A.: 1968, Dynamics of the Earth’s Radiation Belts, Izd. Nauka, Moscow.

    Google Scholar 

  • Vernov, S. N . et al.: 1967, ‘Boundary of the Outer Radiation Belt and the Region of Unstable Radiation’, Geomagnetizm i Aeronomiya 7, 417.

    Google Scholar 

  • Williams, D. J., Mead, G. D.: 1965, ‘Night-Side Magnetosphere Configuration as Obtained from Trapped Electrons at 1100 km’, J. Geophys. Res. 70, 3017.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. R. Dyer

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Shabansky, V.P. (1972). Particle Motions in the Earth’s Magnetosphere. In: Dyer, E.R. (eds) Solar-Terrestrial Physics/1970. Astrophysics and Space Science Library, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3693-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3693-5_23

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8154-2

  • Online ISBN: 978-94-009-3693-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics