Skip to main content

Removal of Arsenic from Waste Waters of the Lead Glass Industry

  • Conference paper
Environmental Technology
  • 130 Accesses

Abstract

Arsenic trioxide (As2O3) is widely used as refining agent for the production of lead glasses /1/. Because of its toxicity there were attempts to reduce its consumption, which have been successful mainly due to an increasing number of electric melters. The As2O3 consumption within the glass industry of the Federal Republic of Germany decreased from about 300 t/a in 1981 to 145 t/a in 1985 /2/. But it was also shown that a complete renunciation of As2O3 is not possible up to now /3/. The possible substitution of As2O3 by Sb2O3 is not recommendable for toxicological and environmental as well as for economical reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peters A: Zur Situation des Arsenverbrauchs unter besonderer Berücksichtigung der Glasindustrie. Glastech. Ber. 50 (1977) 328–325.

    CAS  Google Scholar 

  2. Lubisch G: Bundesverband Glasindustrie und Mineralfaser-industrie e.V. Düsseldorf, FRG: private communication (1986).

    Google Scholar 

  3. Langer A and Scholze H: Untersuchungen zum Ersatz von AS2O3 als Läutermittel für Kristallgläser. Glastech. Ber. 54 (1981) 223–230.

    Google Scholar 

  4. Piepho RF: Reinigen von Schleifabwässern in Glasbearbei-tungsbetrieben. Sprechsaal 116 (1983) 435–436.

    Google Scholar 

  5. Mitsubishi, Rayon Co., Ltd., Japan: Granular titanic acid ion-exchanger. Jpn. Kokai Tokyo Koho 82150444, 82.09.17 PAT APP = 8134232, 81.03. 10, (1982).

    Google Scholar 

  6. Sato H, Shigeta S and Uchida H: Inorganic ion exchanger. Can. 1122876, 82.05.04 PAT APP = 336889, 79.10. 03, (1982).

    Google Scholar 

  7. Kochergin VP et al.: Treatment of industrial wastewaters containing arsenic compounds. Deposited Doc (SPSTL 504 khp-D80), (1980).

    Google Scholar 

  8. Fresenius W and Schneider W: Selektive Entfernung von Fluorid-, Arsenat- und Phosphat-Ionen aus Wasser. WLB, Wasser, Luft und Betrieb 25 (1981) 14–15.

    CAS  Google Scholar 

  9. Watanabe N and Hayakawa O: Adsorption of arsenite and arsenate by soils and charcoal. Kankyo Gijutsu (KAGIDX), (1982), Vll (8) 565–571.

    Google Scholar 

  10. Blavathnik M et al.: Wastewater purification. Otkrytiya, Isobret., Prom. Obraztsy, Tovarnye Znaki (1980) (23) 130. U.S.S.R$1742,389, 25.06.1980 Appl. 2,388, 919, 01. 08. 1976.

    Google Scholar 

  11. Bhattacharyya D, Junrawan AB and Sun G: Precipitation of heavy metals with sodium sulfide: bench-scale and full-scale experimental results. AICHE Symp. Ser. 77 (1981) 31–38.

    CAS  Google Scholar 

  12. Babcock AR and Kuit WJM: Treatment of arsenical effluents. Can. 1111157, 81.10.20 PAT APP = 324552, 79.03. 30, (1979).

    Google Scholar 

  13. Bowers AR, Chin G and Huang CP: Predicting the performance of a lime-neutralization/precipitation process for the treatment of some heavy metal-loaden industrial wastewaters. Ind. Waste, Proc. Mid-Atl., 13th Conf., (1982), 51–62.

    Google Scholar 

  14. Kuznetsov VL et al.: Removal of arsenic from wastewater by treating with natural pyrolusite. Otkrytiya, Isobret., Prom. Obraztsy Tovarnye Znaki (1982) (25) 103 U.S.S.R. 880999, 81.11.15 PAT APP = 3008113, 80.11. 26, (1982).

    Google Scholar 

  15. Gmelins Handbuch der Anorganischen Chemie, 8. edition vol. 17, pp. 297–300, (1952).

    Google Scholar 

  16. Krapf NE: Commercial scale removal of arsenite, arsenate, and methane arsonate from ground and surface water. Environ. Perspect. Proc. Arsenic. Symp. 1981 (Sub. 1983 ) 269–279.

    Google Scholar 

  17. Hogan JC: A new and simple process for treating heavy metal containing wastewaters. Ann. Tech. Conf. Am. Electro- plat. Soc. 69 (1982) 1–18.

    Google Scholar 

  18. Dyck W and Lieser KW: Coprecipitation of copper, zinc, arsenic, silver, cadmium, and lead with iron hydroxide and iron phosphate. Vom Wasser 56 (1981) 183–189.

    Google Scholar 

  19. Shannon WT, Owers WR and Rothbaum HP: Pilot scale so-lids/liquid separation in hot geothermal discharge waters using dissolved air flotation. Geothermics II (1982) 43–58.

    Article  Google Scholar 

  20. Junghanss H, Kudelka H and Dommain K: Verfahren zur Ausfällung und Abtrennung von Arsen aus kupferhaltigen Lösungen. DT 23 42 729 B1 (1975).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this paper

Cite this paper

Kaiser, A., Hutter, F., Kappel, J., Schmidt, H. (1987). Removal of Arsenic from Waste Waters of the Lead Glass Industry. In: De Waal, K.J.A., Van Den Brink, W.J. (eds) Environmental Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3663-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3663-8_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8139-9

  • Online ISBN: 978-94-009-3663-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics