Variational Formulation by Integral Equations for the Sound Radiation in a Non Uniform Flow

  • M. Ben Tahar
  • M. A. Hamdi
Conference paper


We present in this work a new variational formulation by integral equations which enables the calculation of acoustic fields radiated in non uniform compressible flows. Indeed, this formulation reduces the integral domain without modifying the Sommerfeld’s radiation condition. Moreover it avoids computation of the “finite part” of singular integrals and leads to a compact symetrical linear system after discretisation by finite elements. This system is then solved by an iterative method.


Mach Number Variational Formulation Singular Integral Compressible Flow Subsonic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eversman, W. and Astley, R.J., ‘Acoustic Transmission in Nonuniform Ducts with Nean Flow, Part I: The Method of Weighted Residuals’, Journal of Sound and Vibration, 74 (1), (1981), 89–101.zbMATHCrossRefGoogle Scholar
  2. 2.
    Astley, R.J. and Eversman, W., ‘Acousticf Transmission in Non-Uniform Ducts with Nean Flow, Part II: The Finite Element Method’, Journal of Sound and Vibration, 74 (1), (1981), 103–121.zbMATHCrossRefGoogle Scholar
  3. 3.
    Nayfeh, A.H., Shaker, B.S. and Kaiser, J.E., ‘Transmission of Sound Through Non-Uniform Circular Ducts with Compressible Mean Flows’, AIAA Journal, Vol. 18 (5), (1980), 515–525.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Kelly, J.J., Nayfeh, A.H., and Watson, L.T., ‘Acoustic Propagation in Partially Choked Converging-Diverging Ducts’, Journal of Sound and Vibration, 81 (4), (1982), 519–534.CrossRefGoogle Scholar
  5. 5.
    Unishi, K., and Myers, M.K., ‘Two-Dimentional Acoustic Field in a Non-Uniform Duct Carrying Compressible Flow’, AIAA Journal, Vol. 22(9)j, (1984), 1242–1248.Google Scholar
  6. 6.
    Sigman, R.K., Majjigi, R.K. and Zinn, B.T., ‘Determination of Turbofan Inlet Acoustics Using Finite Elements’, AIAA Journal, Vol. 16 (11), (1978), 1139–1145.zbMATHCrossRefGoogle Scholar
  7. 7.
    Baumeister, K.J. and Majjigi, R.K., ‘Application of Velocity Potential Function to Acoustic Duct Propagation Using Finite Elements’, AIAA Journal, Vol. 18 (5), (1980), 509–514.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baumeister, K.J., ‘Numerical Spatial Marching Techniques in Ducts Acoustics’, Journal of Acoustical Society of America, Vol. 65, (1979), 297–306.zbMATHCrossRefGoogle Scholar
  9. 9.
    Horowitz, S. J., Sigman, R.K., and Zinn, B.T., ‘An Iterative Finite Element - Integral Technique for Predicting Sound Radiation from Turbofan Inlets in Steady Flight’, AIAA Journal, Vol. 24 (8), (1986), 1256–1262.zbMATHCrossRefGoogle Scholar
  10. 10.
    Hamdi, M.A., ‘Formulation variationnelle par équations intégrales pour le calcul de champs acoustiques linéaires proches et lointains’, Thèse d’Etat, Université de Technologie de Compiégne, (1982).Google Scholar
  11. 11.
    Ben Tahar, M., Hamdi, M.A., ‘Formulation variationnelle par équations intégrales pour le rayonnement acoustique dans un écoulement non uniforme’, 7ème JESPA, Lyon (France), 1986 ).Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • M. Ben Tahar
    • 1
  • M. A. Hamdi
    • 1
  1. 1.Division Acoustique et Vibrations IndustriellesUniversité de Technologie de CompiègneCompiègne CédexFrance

Personalised recommendations