Advertisement

Transition Plate Bending Elements with Variable Nodes

  • Chang-Koon Choi
  • Yong-Myung Park

Abstract

In this study, the developement of 5- and 6-node transition plate bending elements was presented. The mixed use of these elements and regular 4-node elements enable us to refine the mesh of plate locally where the steep displacement or stress gradient exists. The overestimation of the stiffness pertinent to shear in isoparametric plate bending elements can be cured efficiently by addition of nonconforming displacement modes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bathe, K.J. - Finite Element Procedures in Engineering Analysis, Prentice Hall, New Jersey, 1982.Google Scholar
  2. 2.
    Choi, C.K. and Kim, S.H., ‘Improvement of Degenerated Plate/ Shell Element’, Proc. of the US-Korea Seminar/Workshop on Critical Eng. system, 1987Google Scholar
  3. 3.
    Choi, C.K. and Schnobrich, W.C., ‘Use of Nonconforming Modes in the Finite Element Analysis of Plates and Shell’, Civil Eng. Studies, Structural Research Series No. 401, Univ. of Illinois, 1973Google Scholar
  4. 4.
    Cook, R.D. - Concepts and Applications of Finite Element Analysis, John Willy & Sons, New York, 1981.zbMATHGoogle Scholar
  5. 5.
    Gupta, A.K. ‘A Finite Element for Transition from a fine to a Coarse Grid’, Int. J’ for Numer. Meth. in Eng. 12 (1978), 35–45zbMATHCrossRefGoogle Scholar
  6. 6.
    Hughes, J.R., Cohen, M. and Haroun, M., ‘Reduced and Selective Integration Techniques in the Finite Element Analysis’, Nuclear Eng. 46 (1977), 203–222CrossRefGoogle Scholar
  7. 7.
    Hughes, J.R., Taylor, R.L. and Kanoknukulchai, W., ‘A Simple and Efficient Element for Plate Bending’, Int. J’ for Numer. Meth. in Eng. 11 (1977), 1529–1543zbMATHCrossRefGoogle Scholar
  8. 8.
    Macneal, R.H., ‘A Simple Quadrilateral Shell Element’, Comp. & struct. 46 (1976), 175–183Google Scholar
  9. 9.
    Prathap,G. and Viswanth, S., ‘An Optimally Integrated Four- node Quadrilateral Plate Bending Element’, Int.J’ for Numer. Meth. in Eng. 19 (1983), 831–840CrossRefGoogle Scholar
  10. 10.
    Pugh, E.D.L, Hinton, E. and Zienkiewicz, O.C., ‘A Study of Quadrilateral Plate Bending Elements with Reduced Integration’, Int. J’ for Numer. Meth. in Eng. 12 (1978), 1059–1079zbMATHCrossRefGoogle Scholar
  11. 11.
    Taylor, R.L. and Beresford, P.J., ‘A Nonconforming Element for Stress Analysis’, Int. J’ for Numer. Meth. in Eng. 10 (1976), 1211–1210zbMATHCrossRefGoogle Scholar
  12. 12.
    Timosheriko, S.P. and Kriger, S.W., - Theory of Plates and Shells, McGraw-Hill, New-York, 1959.Google Scholar
  13. 13.
    Wilson, E.L., Taylor, R.L., Doherty, W.P. and Ghaboussi,J., ‘Incompatible Displacement Modes’, Int. Sym. on Numer. and Comp. Meth. in Struct. Mech., Univ. of Illinois, 1971Google Scholar
  14. 14.
    Zienkiewicz, O.C., - The Finite Element Method, McGraw-Hill, New-York, 1977zbMATHGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • Chang-Koon Choi
    • 1
  • Yong-Myung Park
    • 1
  1. 1.Department of Civil EngineeringKorea Advanced Institute of Science and TechnologySeoulKorea

Personalised recommendations