Skip to main content

Rigid and Flexible Mechanisms A Finite Element Approach Based on the Conformal Rotation Vector

  • Conference paper
Numerical Techniques for Engineering Analysis and Design
  • 569 Accesses

Abstract

A technique for the representation of the rotation operator in terms of only three free parameters based on the conformai rotation vector concept is described. It allows to develop efficient finite elements of mechanism components. The application to the deployment of a lightweight space structure cell demonstrates its high potential for analyzing 3-D flexible mechanisms with arbitrary topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wittenbueg J., Dynamics of systems of rigid bodies, Teubner, Stuttgart (1977).

    Google Scholar 

  2. Geradin M., Robert G. and Bernardin, “Dynamic modelling of manipulators with flexible members”, in Advanced software in robotics, Ed. by A. Danthine and M. Geradin, North Holland (1984).

    Google Scholar 

  3. Chace M., “Computer-aided engineering of large displacements dynamic mechanical systems”, CAE/CAD/CAM Conference, April 1983, Salt Lake City, Utah.

    Google Scholar 

  4. Haug E. J., Wehage R. and Barman N., “Dynamic analysis and design of constrained mechanical systems”, Technical Report Nx 50, Div. of Eng., Univ. of Iowa, Nov. 1978.

    Google Scholar 

  5. Song J. and Haug E. J., “Dynamic analysis of mechanisms”,Comp. Meth. in AppL Meek and Engng. Vol 24, pp.359–381 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  6. Van Der Werff K. and Jonker J. B., “Dynamics of flexible mechanisms”, in Computer aided analysis and optimization of mechanical system dynamics, Ed.E. J. Haug, Springer-Verlag (1984).

    Google Scholar 

  7. Shabana A. A., “Substructure synthesis methods for dynamic analysis of multi-body systems”, Computers and Structures, Vol. 20, pp. 737–744 (1985).

    Article  MATH  Google Scholar 

  8. Agrawal O. P. and Shabana A. A., “Application of deformable-body mean axis to flexible multibody system dynamics”, Comp. Meth. Appt. Mech. Engng., Vol. 56, pp. 217–245 (1986).

    Article  MATH  Google Scholar 

  9. Nikravesh P., “Spatial kinematics and dynamic analysis with Euler parameters”, in Computer aided analysis and optimization of mechanical system dynamics, Ed. by E. J. Haug, Springer-Verlag (1984).

    Google Scholar 

  10. Geradin M., “Finite element approach to kinematic and dynamic analysis of mechanisms using Euler parameters”, in Numerical methods for nonlinear problems H, Ed. by C.Taylor et al, Pineridge Press, Swansea, U.K. (1984).

    Google Scholar 

  11. Geradin M., Robert G. and Buchet P., “Kinematic and dynamic analysis of mechanisms: a finite element approach based on Euler parameters”, in Finite element methods for nonlinear problems, Ed. by P. Bergan et al, Springer-Verlag (1986).

    Google Scholar 

  12. Wehage R. A., “Quaternions and Euler parameters. A brief exposition”, in Computer aided analysis and optimization of mechanical system dynamics, Ed. by E. J. Haug, Springer-Verlag (1984).

    Google Scholar 

  13. Milenkovic V., “Coordinates suitable for angular motion synthesis of robots”.

    Google Scholar 

  14. Geradin M. and Cardona A., “Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra”, submitted for publication in Computational Mechanics.

    Google Scholar 

  15. Baumgarte J., “Stabilization of constraints and integrals of motion in dynamical systems”, Comp. Meth. Appl. Mech. Engng Vol. 1, pp. 1–16 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  16. Wehage R. A. and Haug E. J., “Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems”, Journal of Mechanical Design, Vol. 104, pp. 247–255 (1982).

    Article  Google Scholar 

  17. Hughes T. J. R., “Analysis of transient algorithms with particular reference to stability problems”, in Computational methods for transient analysis, Ed. by T. Belytschko and T. J. R.Hughes, North Holland (1983).

    Google Scholar 

  18. Petzold L. and Lotstedt P., “Numerical solution of nonlinear differential/algebraic systems from physics and engineering”, in Innovative methods for nonlinear problems, Ed. by Liu W., Belytschko T. and Park K. C., Pineridge Press (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this paper

Cite this paper

Geradin, M., Cardona, A. (1987). Rigid and Flexible Mechanisms A Finite Element Approach Based on the Conformal Rotation Vector. In: Pande, G.N., Middleton, J. (eds) Numerical Techniques for Engineering Analysis and Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3653-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3653-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8134-4

  • Online ISBN: 978-94-009-3653-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics