Advertisement

Rigid and Flexible Mechanisms A Finite Element Approach Based on the Conformal Rotation Vector

  • M. Geradin
  • A. Cardona
Conference paper

Abstract

A technique for the representation of the rotation operator in terms of only three free parameters based on the conformai rotation vector concept is described. It allows to develop efficient finite elements of mechanism components. The application to the deployment of a lightweight space structure cell demonstrates its high potential for analyzing 3-D flexible mechanisms with arbitrary topology.

Keywords

Multibody System Finite Element Approach Flexible Mechanism Tangent Stiffness Matrix Flexible Multibody System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wittenbueg J., Dynamics of systems of rigid bodies, Teubner, Stuttgart (1977).Google Scholar
  2. 2.
    Geradin M., Robert G. and Bernardin, “Dynamic modelling of manipulators with flexible members”, in Advanced software in robotics, Ed. by A. Danthine and M. Geradin, North Holland (1984).Google Scholar
  3. 3.
    Chace M., “Computer-aided engineering of large displacements dynamic mechanical systems”, CAE/CAD/CAM Conference, April 1983, Salt Lake City, Utah.Google Scholar
  4. 4.
    Haug E. J., Wehage R. and Barman N., “Dynamic analysis and design of constrained mechanical systems”, Technical Report Nx 50, Div. of Eng., Univ. of Iowa, Nov. 1978.Google Scholar
  5. 5.
    Song J. and Haug E. J., “Dynamic analysis of mechanisms”,Comp. Meth. in AppL Meek and Engng. Vol 24, pp.359–381 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Van Der Werff K. and Jonker J. B., “Dynamics of flexible mechanisms”, in Computer aided analysis and optimization of mechanical system dynamics, Ed.E. J. Haug, Springer-Verlag (1984).Google Scholar
  7. 7.
    Shabana A. A., “Substructure synthesis methods for dynamic analysis of multi-body systems”, Computers and Structures, Vol. 20, pp. 737–744 (1985).zbMATHCrossRefGoogle Scholar
  8. 8.
    Agrawal O. P. and Shabana A. A., “Application of deformable-body mean axis to flexible multibody system dynamics”, Comp. Meth. Appt. Mech. Engng., Vol. 56, pp. 217–245 (1986).zbMATHCrossRefGoogle Scholar
  9. 9.
    Nikravesh P., “Spatial kinematics and dynamic analysis with Euler parameters”, in Computer aided analysis and optimization of mechanical system dynamics, Ed. by E. J. Haug, Springer-Verlag (1984).Google Scholar
  10. 10.
    Geradin M., “Finite element approach to kinematic and dynamic analysis of mechanisms using Euler parameters”, in Numerical methods for nonlinear problems H, Ed. by C.Taylor et al, Pineridge Press, Swansea, U.K. (1984).Google Scholar
  11. 11.
    Geradin M., Robert G. and Buchet P., “Kinematic and dynamic analysis of mechanisms: a finite element approach based on Euler parameters”, in Finite element methods for nonlinear problems, Ed. by P. Bergan et al, Springer-Verlag (1986).Google Scholar
  12. 12.
    Wehage R. A., “Quaternions and Euler parameters. A brief exposition”, in Computer aided analysis and optimization of mechanical system dynamics, Ed. by E. J. Haug, Springer-Verlag (1984).Google Scholar
  13. 13.
    Milenkovic V., “Coordinates suitable for angular motion synthesis of robots”.Google Scholar
  14. 14.
    Geradin M. and Cardona A., “Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra”, submitted for publication in Computational Mechanics.Google Scholar
  15. 15.
    Baumgarte J., “Stabilization of constraints and integrals of motion in dynamical systems”, Comp. Meth. Appl. Mech. Engng Vol. 1, pp. 1–16 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Wehage R. A. and Haug E. J., “Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems”, Journal of Mechanical Design, Vol. 104, pp. 247–255 (1982).CrossRefGoogle Scholar
  17. 17.
    Hughes T. J. R., “Analysis of transient algorithms with particular reference to stability problems”, in Computational methods for transient analysis, Ed. by T. Belytschko and T. J. R.Hughes, North Holland (1983).Google Scholar
  18. Petzold L. and Lotstedt P., “Numerical solution of nonlinear differential/algebraic systems from physics and engineering”, in Innovative methods for nonlinear problems, Ed. by Liu W., Belytschko T. and Park K. C., Pineridge Press (1984).Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • M. Geradin
    • 1
    • 2
  • A. Cardona
    • 1
  1. 1.L.T.A.S. Dynamique des Constructions MécaniquesUniversité de Liège Eue Ernest SolvayLiègeBelgium
  2. 2.University of ColoradoBoulderUSA

Personalised recommendations