Convergence of Hierarchical Finite Elements

  • Jürgen Bellmann
Conference paper


In finite-element-analysis, a new generation of programs is arrising, helping the engineer to obtain solutions with higher accuracy. The aim of these programs is to reduce the approximation error automatically. Thus it becomes necessary to get aposteriori information on the magnitude of the error and its distribution over the mesh. Among the two different types of adaptive procedures (h- and p- version), the variation of the polynomial order (p-version) for plate problems is discussed in this paper. In particular the behavior of the hierarchical elements noticeably deviating from the rectangular shape is examined.


Posteriori Error Polynomial Order Error Indicator Plate Problem Adaptive Refinement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    The Finite Element Method O. C. Zienkiewicz Mc Graw-Hill Book Company 1977zbMATHGoogle Scholar
  2. /2/.
    Adaptive Approximation in Finite Element Structural Analysis Peano, Pasini, Riccioni and Sardella ISMES-Conference Bergamo Italy 1978Google Scholar
  3. /3/.
    Hierarchical finite element approaches, error estimates and adaptive refinement O. C. Zienkiewicz, D. Kelly, J. Gago and I. BabuskaGoogle Scholar
  4. /4/.
    Transient and pseudo-transient analysis of mindlin plates A. Pica and E. Hinton International journal for numerical methods in engineering, Vol. 15 189 – 208 1980zbMATHCrossRefGoogle Scholar
  5. /5/.
    Shear-constraints and folded-plated structures M. A. Crisfield Engineering computations Vol 2 Sept. 1985Google Scholar
  6. /6/.
    A posteriori error analysis and adaptive processes in the finite element method part I and part II D. Kelly, J. Gago, O. C. Zienkiewicz and I. Babuska International journal for numerical methods in engineering, Vol. 19 1593 – 1619 1983MathSciNetzbMATHCrossRefGoogle Scholar
  7. /7/.
    A posteriori error indicators for the p-version of the finite element method D Dunavant and B. Szabo International journal for numerical methods in engineering, Vol. 19 1851 – 1870 1983MathSciNetzbMATHCrossRefGoogle Scholar
  8. /8/.
    A-posteriori-Fehlerabschätzungen und adaptive Netzverfeinerung für Finite-Element- und Randintegralelement-Methoden E. Rank Mitteilungen aus dem Institut für Bauing. wesen I Technische Universität München 1985 Heft 16Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • Jürgen Bellmann
    • 1
  1. 1.Fachgebiet Elektronisches Rechnen im konstruktiven IngenieurbauTechnische Universität MünchenMünchenGermany

Personalised recommendations