Advertisement

Logic and Inexactness

  • John P. Cleave
Chapter
Part of the Nijhoff International Philosophy Series book series (NIPS, volume 28)

Abstract

A distinctive feature of Körner’s work is the novelty and depth of the application of mathematical logic to philosophical problems. His main achievement in philosophial logic is the theory and application — particularly to empirical continua — of a three-valued logic of inexactness. The purpose of this essay is to describe the origin and mathematical development of Körner’s logic and its applications. A unifying concept is the notion of quasi-Boolean algebra, which is related to the three-valued logic and the calculus of inexact classes much as Boolean algebra is related to the classical, two-valued logic and the traditional calculus of classes.

General References

  1. 1.
    A.R.Anderson & N.D. BelnapJr., “Tautological Entailments”, Philosophical Studies 13 (1962) 9–24.CrossRefGoogle Scholar
  2. 2.
    A.R.Anderson & N.D.Belnap Jr., Entailment; the Logic of Relevance and Necessity Vol.1 (Princeton University Press, 1975).Google Scholar
  3. 3.
    A.Biaγynicki-Birula & H.Rasiowa, “On the Representation of Quasi-Boolean Algebras”, Bull. Acad. Polon. Science C1.III 5 (1957) 259–261.Google Scholar
  4. 4.
    G. Birkhoff, “Lattice Theory”, American Mathematical Society 1948.Google Scholar
  5. 5.
    U.Blau, Die Dreiwertige Logik der Sprache (de Gruyter, 1978).Google Scholar
  6. 6.
    N.Campbell, Physics — the Elements (Cambridge, 1920).Google Scholar
  7. 7.
    R.Carnap, Logical Syntax of Language (Routledge & Kegan Paul, 1937).Google Scholar
  8. 8.
    R.Cignoli, “Boolean Elements in Lukasiewicz Algebras I”, Proceed, of the Jap. Acad. 41 (1965) 670–675.CrossRefGoogle Scholar
  9. 9.
    J.P.Cleave, “Some Remarks on the Interpretation of Three-valued Logics”, Ratio XXII(1) (1980) 52–60.Google Scholar
  10. 10.
    J.P.Cleave, “The Notion of Logical Consequence in the Logic of Inexact Predicates”, Zeitschr. für Math. Logik und Grund, der Math. 20 (1974) 307–324.CrossRefGoogle Scholar
  11. 11.
    J.P.Cleave, “Quasi-Boolean Algebras, Empirical Continuity and Three- valued Logic”, Zeitschr. für Math. Logik und Grund, der Math. 22 (1976) 481–500.CrossRefGoogle Scholar
  12. 12.
    J.P.Cleave, “An Account of Entailment Based on Classical Semantics”, Analysis 34 (1974) 118–122.CrossRefGoogle Scholar
  13. 13.
    J.P.Cleave, “The Axiomatisation of Material Necessity”, Notre Dame Journal of Formal Logic XX (1979) 180–190.CrossRefGoogle Scholar
  14. 14.
    G.Grätzer, Universal Algebra (Van Nostrand, 1968).Google Scholar
  15. 15.
    P.Hájek, K.Bendová & Z.Renc, “The GUHA Method and the Three-valued Logic”, Kybernetica 7 (1971) 421–435.Google Scholar
  16. 16.
    J.A.Kaiman, “Lattices with Involution”, Trans. Amer. Math. Society 87 (1958) 458–491.Google Scholar
  17. 17.
    S.C.Kleene, Introduction to Netamathematics (North Holland, 1962).Google Scholar
  18. 18.
    K.Kuratowski, Introduction to Set Theory and Topology (Pergamon, 1961).Google Scholar
  19. 19.
    Z.Manna & J.McCarthy “Properties of Programs. Partial Function Logic”, Machine Intelligence 5 (eds.) B.Meltzer & D.Mitchie (Edinburgh University Press).Google Scholar
  20. 20.
    G.C.Moisil, “Recherches sur l’Algèbra de la Logique”, Ann. Sci. Univ. Jassy. 22 (1935) 1–118.Google Scholar
  21. 21.
    A.Monteiro, “Matrices de Morgan Caracteristiques pour le Calcul Propositionnel Classique”, An. Acad. Brasil Ci 32 (1960) 1–7.Google Scholar
  22. 22.
    V.Muškardin, Quasi-Boolean Algebras and Semantics for Entailment, Ph.D.Thesis, University of Bristol, 1978.Google Scholar
  23. 23.
    E. Nagel, The Structure of Science: Problems in the Logic of Scientific Explanation (Routledge & Kegan Paul, 1979).Google Scholar
  24. 24.
    H.Rasiowa, An Algebraic Approach to Non-Clasical Logics (North Holland, 1974).Google Scholar
  25. 25.
    H.Reichenbach, Wahrscheinlichkeitslehre (Leiden, 1935).Google Scholar
  26. 26.
    H.Reichenbach, “Three-valued Logic and the Interpretation of Quantum Mechanics”, in The Logico-Algebraic Approach to Quantum Mechanics Vol.1 (ed.) C.A.Hooker (D.Reidel, 1975).Google Scholar
  27. 27.
    B.Russell, Introduction to Mathematical Philosophy (Allen & Unwin, 1970).Google Scholar
  28. 28.
    K.Schütte, Beweistheorie (Springer, 1960).Google Scholar
  29. 29.
    A.Tarski, Logic, Semantics, Metamathematics (Oxford, 1956).Google Scholar

References to the Writing of S.Körner

  1. K1.
    “On Entailment”, Proceedings of the Aristotelian Society XXI (1947) 143–162.Google Scholar
  2. K2.
    Conceptual Thinking (Dover, 1959).Google Scholar
  3. K3.
    The Philosophy of Mathematics (Hutchinson University Library, 1960).Google Scholar
  4. K4.
    Experience and Theory (Routledge & Kegan Paul, 1966).Google Scholar
  5. K5.
    Private communication to A.Anderson, 29.1.73.Google Scholar
  6. K6.
    “Material Necessity”, Kant Studien (1973) 423–430.Google Scholar
  7. K7.
    Experience and Conduct (Cambridge University Press, 1976).Google Scholar
  8. K8.
    “On Logical Validity and Informal Appropriateness”, Philosophy 54 (1979) 377–79.Google Scholar
  9. K9.
    “Science and the Organisation of Belief”, in (ed.) D.H.Mellor, Science, Belief and Behaviour (Cambridge University Press, 1980).Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1987

Authors and Affiliations

  • John P. Cleave

There are no affiliations available

Personalised recommendations