Skip to main content

Organization of the Cochlear Nucleus for Information Processing

  • Chapter
The Psychophysics of Speech Perception

Part of the book series: NATO ASI Series ((ASID,volume 39))

Abstract

The representation of complex stimuli has been studied in detail at the level of the auditory nerve. Although many aspects of stimulus coding in the auditory nerve remain to be worked out, the general outlines seem clear (see Sachs, 1984, for a review). It is generally accepted that the basic organizing principle of the auditory system is tonotopicity (Imig et al., 1982; Merzenich et al., 1982), so the representation of a complex stimulus can be considered as a profile of neural activity against a tonotopic axis. The tonotopic axis is created by the frequency analysis of the basilar membrane and is represented neurally by the tuning of neural elements. The peripheral tonotopic axis is preserved in the central nervous system, in that each central auditory nucleus contains an orderly tonotopic array in which the best frequencies of cells are laid out in a monotonic fashion (Merzenich et al., 1982).

The work reported in this paper was done by or in collaboration with Carol C. Blackburn, Jeanne-Marie E. Robert, Murray B. Sachs, William P. Shofner, and John A. White. Preparation of this paper was supported by NIH grants RO1-NS12524 and RO1-NS12112.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J.C. (1979). Ascending projections to the inferior colliculus. J. Comp. Neurol., 183, 519–538.

    Article  PubMed  Google Scholar 

  2. Blackburn, C.C., Shofner, W.P. and Sachs M.B. (1986). The representation of the steady-state vowel sound /ε/ in the temporal discharge patterns of cat anteroventral cochlear nucleus neurons. Abst. 9th Midwinter Res.Mtg., Assoc. Res, in Otol, 9, 130.

    Google Scholar 

  3. Bourk, T.R. (1976). Electrical Responses of Neural Units in the Anteroventral Cochlear Nuclues of the Cat. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  4. Brawer, J.R. and Morest D.K. (1975). Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J. Comp. Neurol., 160, 491–506

    Article  PubMed  Google Scholar 

  5. Brownell, W.E. (1975). Organization of the cat trapezoid body and the discharge characteristics of its fibers. Brain Research, 94, 413–433.

    Article  PubMed  Google Scholar 

  6. Caird, D. and Klinke, R. (1983). Cat superior olivary complex (SOC): The basis of binaural information processing. In: R. Klinke and R. Hartmann (Eds.) Hearing — Physiological Bases and Psychophysics, 216–223. Springer Verlag, Berlin.

    Google Scholar 

  7. Cajal, S.R., (1909–1911). Histologie du Systeme Nerveaux de l’Homme et des Vertebres. Maloine, Paris.

    Google Scholar 

  8. Cant, N.B. (1981). The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience, 6, 2643–2655.

    Article  PubMed  Google Scholar 

  9. Cant, N.B. and Morest D.K. (1979a). Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat: Light microscopic observations. Neuroscience, 4, 1909–1923.

    Article  PubMed  Google Scholar 

  10. Cant, N.B. and Morest, D.K. (1979b). The bushy cells in the anteroventral cochlear nucleus of the cat. A study with the electron microscope. Neuroscience, 4, 1925–1945.

    Article  PubMed  Google Scholar 

  11. Cant, N.B. and Morest, D.K. (1984). The structural basis for stimulus coding in the cochlear nucleus of the cat. In: C.I. Berlin (Ed.) Hearing Science, Recent Advances, 371–421. College Hill Press, San Diego.

    Google Scholar 

  12. Delgutte, B. (1982). Some correlates of phonetic distinctions at the level of the auditory nerve. In: R. Carlson and B. Granstrom (Eds.) The Representation of Speech in the Peripheral Auditory System, 131–150. Elsevier, Amsterdam.

    Google Scholar 

  13. Delgutte, B. and Kiang, N.Y.-S. (1984). Speech coding in the auditory nerve: V. Vowels in background noise. Jour. Acoust. Soc. Am., 75, 908–918.

    Article  Google Scholar 

  14. Evans, E.F. and Nelson P.G. (1973). The responses of single neurones in the cochlear nucleus of the cat as a function of their location and the anaestetic state. Exp. Brain Res., 17, 402–427.

    PubMed  Google Scholar 

  15. Frisina, R.D., Smith, R.L., and Chamberlain, S.C. (1985). Differential encoding of rapid changes in sound amplitude by second- order auditory neurons. Exp. Brain. Res., 60, 417–422.

    Article  PubMed  Google Scholar 

  16. Gibson, D.J., Young, E.D., and Costalupes, J.A. (1985). Similarity of dynamic range adjustment in auditory nerve and cochlear nuclei. J. Neurophysiol. 53, 940–958.

    PubMed  Google Scholar 

  17. Gisbergen, J.A.M. van, Grashuis, J.L., Johannesma, P.I.M., and Vendrik, A.J.H. (1975). Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anaesthetized cat. Exp. Brain Res., 23, 367–386.

    PubMed  Google Scholar 

  18. Godfrey, D.A., Kiang N.Y.S., and Norris, B.E. (1975). Single unit activity in the posteroventral cochlear nucleus of the cat. J. Comp. Neurol., 162, 247–268.

    Article  PubMed  Google Scholar 

  19. Goldberg, J.M. and Brown, P.B. (1969). Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. J. Neurophysiol., 32, 613–636.

    PubMed  Google Scholar 

  20. Guinan, J.J., Guinan, S.S., and Norris, B.E. (1972). Single auditory units in the superior olivary complex II: Locations of unit categories and tonotopic organization. Intern. Neurosci., 4, 147–166.

    Article  Google Scholar 

  21. Imig, T.J., Reale, R.A. and Brugge, J.F. (1982). The auditory cortex: Patterns of corticocortical projections related to physiological maps in the cat. In: C.N. Woolsey (Ed.) Cortical Sensory Organization, Vol. 3, 1–42. Humana Press, Clifton, N.J.

    Google Scholar 

  22. Jack, J.J.B., Noble, D., and Tsien, R.W. (1975), Electric Current Flow in Excitable Cells. Clarendon Press, Oxford.

    Google Scholar 

  23. Knudsen, E.I, and Konishi, M. (1979). Mechanisms of sound localization in the barn owl. J. Comp. Physiol., 133, 13–21.

    Article  Google Scholar 

  24. Lenn, N.J. and Reese, T.S. (1966). Fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Amer. J. Anat., 118, 375–390.

    Article  PubMed  Google Scholar 

  25. Liberman, M.C. (1978). Auditory-nerve response from cats raised in a low-noise chamber. J. Acoust. Soc. Am., 63, 422–455.

    Google Scholar 

  26. Lorente de No, R. (1981). The primary Acoustic Nuclei. Raven, New York.

    Google Scholar 

  27. Merzenich, M.M., Loeb, G.E., and White, M.W. (1980). Extraction of spectral information in auditory brainstem nuclei; hypothesis and experimental observations. J. Acoust. Soc. Am., 68, S19 (Abst.).

    Article  Google Scholar 

  28. Merzenich, M.M., Colwell, S.A., and Andersen, R.A. (1982). Auditory forebrain organization: Thalamocortical and corticothalamic connections in the cat. In: C.N. Woolsey (Ed.) Cortical Sensory Organization, Vol. 3, 43–58. Humana Press, Clifton, N.J.

    Google Scholar 

  29. Mills, A.W. (1972). Auditory localization. In: J.V. Tobias (Ed.) Foundations of Modern Auditory Theory, Vol. 11, 301–348. Academic Press, New York.

    Google Scholar 

  30. Moinar, C.E. and Pfeiffer R.R. (1968). Interpretation of spontaneous spike discharge patterns of cochlear nucleus neurons. Proc. IEEE, 56, 993–1002.

    Article  Google Scholar 

  31. Noort, van J. (1969). The Structure and Connections of the Inferior Colliculus, van Gorcum and Co., Assen, The Netherlands.

    Google Scholar 

  32. Oertel, D. (1985). Use of brain slices in the study of the auditory system: Spatial and temporal summation of synaptic inputs in cells in the anteroventral cochlear nucleus of the mouse. J. Acoust. Soc. Am., 78, 328–333.

    Article  PubMed  Google Scholar 

  33. Palmer, A.R., Winter I.M. and Darwin, C.J. (1986). The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. J. Acoust. Soc. Am., 79, 100–113.

    Article  PubMed  Google Scholar 

  34. Pfeiffer, R.R. (1966a). Classification of response patterns of spike discharges for units in the cochlear nucleus: Tone burst stimulation. Exp. Brain Res., 1, 220–235.

    Article  PubMed  Google Scholar 

  35. Pfeiffer, R.R. (1966b). Anteroventral cochlear nucleus: Wave forms of extracellularly recorded spike potentials. Science. 134, 667–668.

    Article  Google Scholar 

  36. Rall, W. (1962). Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci., 96, 1071–1092.

    Article  PubMed  Google Scholar 

  37. Rall, W. (1977). Core conductor theory and cable properties of neurons. In: E.R. Kandel (Ed.) Handbook of Physiology, Section I: The Nervous System. Volume I: Cellular Biology of Neurons, 39–97. American Physiological Society, Bethesda.

    Google Scholar 

  38. Rhode, W.S., Oertel, D., and Smith, P.H. (1983). Physiological response properties of cells labeled intracellularly with horseradish peroxidase in the cat ventral cochlear nucleus. J. Comp. Neurol., 213, 448–463.

    Article  PubMed  Google Scholar 

  39. Romand, R. (1978). Survey of intracellular recording in the cochlear nucleus of the cat. Brain Res., 148, 43–65.

    Article  PubMed  Google Scholar 

  40. Rouiller, E.M. and Ryugo, D.K. (1984). Intracellular marking of physiologically characterized cells in the ventral cochlear nucleus of the cat. J. Comp. Neurol. 225, 167–186.

    Article  PubMed  Google Scholar 

  41. Ryugo, D.K. and Fekete, D.M. (1982). Morphology of primary axosomatic endings in the anteroventral cochlear nucleus of the cat: A study of the endbulbs of Held. J. Comp. Neurol., 210, 239–257.

    Article  PubMed  Google Scholar 

  42. Sachs, M.B. (1984). Speech encoding in the auditory nerve. In: C.I. Berlin, (Ed.) Hearing Science, Recent Advances, 263–307. College Hill Press, San Diego.

    Google Scholar 

  43. Sachs, M.B. and Young, E.D. (1979). Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. J. Acoust. Soc. Am., 66, 470–479.

    Article  PubMed  Google Scholar 

  44. Sachs, M.B. and Young, E.D. (1980). Effects of nonlinearities on speech encoding in the auditory nerve. J. Acoust. Soc. Am., 68, 858–875.

    Article  PubMed  Google Scholar 

  45. Sachs, M.B., Voigt, H.F., and Young, E.D. (1983). Auditory nerve representation of vowels in background noise. J. Neurophysiol., 50, 27–45.

    PubMed  Google Scholar 

  46. Schalk, T.B. and Sachs, M.B. (1980). Nonlinearities in auditory-nerve fiber responses to bandlimited noise. J. Acoust. Soc. Am., 67, 903–913.

    Article  PubMed  Google Scholar 

  47. Shamma, S.A. (1985). Speech processing in the auditory system II: Lateral inhibition and the central processing of speech-evoked activity in the auditory nerve. J. Acoust. Soc. Am., 78, 1622–1632.

    Article  PubMed  Google Scholar 

  48. Shofner, W.P. and Young, E.D. (1985). Excitatory/inhibitory response types in the cochlear nucleus: Relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J. Neurophysiol., 54, 917–939.

    PubMed  Google Scholar 

  49. Sullivan, W.E. and Konishi, M. (1984). Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J. Neurosci., 4, 1787–1799.

    PubMed  Google Scholar 

  50. Takahashi, T., Moiseff, A., and Konishi, M. (1984). Time and intensity cues are processed independently in the auditory system of the owl. J. Neurosci., 4, 1781–1786.

    PubMed  Google Scholar 

  51. Tolbert, L.P. and Morest, D.K. (1982). The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Electron microscopy. Neuroscience, 7, 3053–3067.

    Article  PubMed  Google Scholar 

  52. Tolbert, L.P., Morest, D.K., and Yurgelun-Todd, D.A. (1982). The neuronal architecture of the anteroventral cochlear neucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labelling of identified cell types. Neuroscience, 7, 3031–3052.

    Article  PubMed  Google Scholar 

  53. Tsuchitani, C. (1977). Functional organization of lateral cell groups of cat superior olivary complex. J. Neurophysiol., 40, 296–318.

    PubMed  Google Scholar 

  54. Warr, VV.B. (1982). Parallel ascending pathways from the cochlear nucleus: Neuroanatomical evidence of functional specialization. Contributions to Sensory Physiology, 7, 1–38.

    Google Scholar 

  55. Winslow, R.L. (1985). A Quantitative Analysis of Rate-Coding in the Auditory-Nerve. Doctoral dissertation, The Johns Hopkins Univ., Baltimore.

    Google Scholar 

  56. Yin, T.C.T. and Kuwada, S. (1983). Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J. Neurophysiol., 50, 1000–1019.

    PubMed  Google Scholar 

  57. Yin, T.C.T., Kuwada S., and Sujaku, Y. (1984). Interaural time sensitivity of high frequency neurons in the inferior colliculus. J. Acoust. Soc. Am., 76, 1401–1410.

    Article  PubMed  Google Scholar 

  58. Yost, W.A. (1974). Discriminations of interaural phase differences. J. Acoust. Soc. Am., 55, 1299–1303.

    Article  PubMed  Google Scholar 

  59. Young, E.D. (1984). Response characteristics of neurons of the cochlear nuclei. In: C.I. Berlin (Ed.) Hearing Science, Recent Advances, 423–460. College Hill Press, San Diego.

    Google Scholar 

  60. Young, E.D. and Sachs, M.B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J. Acoust. Soc. Am., 66, 1381–1403.

    Article  PubMed  Google Scholar 

  61. Young, E.D. and Voigt H.F. (1982). Response properties of type II and type III units in the dorsal cochlear nucleus. Hearing Res. 6, 153–169.

    Article  Google Scholar 

  62. Young, E.D., Shofner, W.P., White, J.A., Robert, J.M., and Voigt, H.F. (1986). Response properties of cochlear nucleus neurons in relationship to physiological mechanisms. In: S. Hassler (Ed.) Functions of the Auditory System. John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Young, E.D. (1987). Organization of the Cochlear Nucleus for Information Processing. In: Schouten, M.E.H. (eds) The Psychophysics of Speech Perception. NATO ASI Series, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3629-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3629-4_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8123-8

  • Online ISBN: 978-94-009-3629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics