Skip to main content

Guided-Wave Chemical Sensors

  • Chapter
Optical Fiber Sensors

Part of the book series: NATO ASI Series ((NSSE,volume 132))

  • 276 Accesses

Abstract

Chemical sensing with optical fibres is one of the more interesting areas of optical fibre sensors, and as classical chemical instrumentation frequently employs spectrometry there is a natural extension to using optical fibres as light guides in spectrometers. A number of people have reviewed work in optical fibre chemical sensors (1, 2, 3, 4) and optical fibre biomedical sensors (5, 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nylander: Chemical and Biological Sensors. J. Phys E. Sci Instrum 18, 736–750 (1985).

    Google Scholar 

  2. T. Hirschfeld: J.B. Callis and B.R. Kowalski, Chemical Sensing in Process Analysis Science, 226, 312–318 (1984).

    Article  Google Scholar 

  3. W.R Seitz: Chemical Sensors based on Fiber Optics Analytical Chemistry, 56, 16A–33A (1984).

    Google Scholar 

  4. I. Chabay: Optical Waveguides Analytical Chemistry, 54, 1071A–1080A (1982).

    Google Scholar 

  5. J.I. Peterson and C.G. Vurek: Fiber Optic Sensors for biomedical applications. Science 224, 123–127 (1984).

    Article  Google Scholar 

  6. J.F. Place: R.M. Sutherland and C. Dähne: Optoelectronic Immunoassay at continuous surfaces. Biosensors 1 (1985).

    Google Scholar 

  7. G. Boisde, C. Linger and J.J. Perez: Developments recents de la spectrophotometrie par fibres optiques pour le contrôle “in situ” de 1’uranium VI en solution. Fifth ann. symp. on Safeguards and Nuclear Mat. Manag., France, p. 203 208 (1983).

    Google Scholar 

  8. S. Klainer, T. Hirschfeld, H. Bowman, F. Milanovich D. Perry and D. Johnson: A monitor for detecting nuclear-waste leakage in a subsurface repository. Science Division Annual Report, Lawrence Berkeley Lab. LBL-11981 (1981).

    Google Scholar 

  9. Trott G.R., Furtak T.F. Rev. Sci. Instrum. 51, 1493 (1980).

    Google Scholar 

  10. T.Hirschfeld:“Remote analysis by fluorescence, Raman and absorption measurements over optical fibres”. European Conf. on industrial line spectrographic analysis, Rouen, France. June 1985. p. 1–1 (1985).

    Google Scholar 

  11. J.P. Laude, J. Flamand, J.C. Gautherin, D. Lepere, P. Gacoin, F. Bos and J. Lerner: “Stimax, a grating multiplexer for monomode or multimode fibres”. European Conf. Optical Communications, Geneva, p 417–420 (1983).

    Google Scholar 

  12. J.P. Laude, J.C. Gautherin, D. Lepere, J. Flamand, P. Gacoin and F. Bos: Multiplexeurs multiples a fonction optique partagée. Opto, 19, 29–31 (1984).

    Google Scholar 

  13. H.E. Korth: Film Thickness monitoring with a fiber optic realtime spectrometer. Second Int. Conf. Opt. Fibre Sensors, Stuttgart, 219–222 (1984).

    Google Scholar 

  14. H.E. Korth: A computer integrated spectrophotometer for film thickness monitoring. Journal de Physique 44, CIO p 101–104 (1983).

    Google Scholar 

  15. P.K. Tien and R.J. Capik: A thin film spectrograph for guided-waves. Topical Meeting on Integr and Guided-wave Optics, Nevada, p TuB3-l (1980).

    Google Scholar 

  16. H. Inaba, T. Kobayashi, M. Hirama and M. Hamza: Optical-fibre Network System for Airpollution monitoring over a wide area by optical absorption method. Elec. Lett. 15 749–751

    Google Scholar 

  17. A. Hordrik, A. Berg, D. Thingbo: A fiber optic gas detection system. Ninth Europ. Conf. Opt. Commun, Geeneva, 317–320 (1983).

    Google Scholar 

  18. K. Chan, H. Ito and H. Inaba: An optical fiber based gas sensor for remote absorption measurement of low- level CH4 gas in the near-infrared region. J. Lightwave Tech. LT-2, 234–237 (1984).

    Google Scholar 

  19. K. Chan, H.Ito and H. Inaba: Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fibre link. Appl. Ont. 23, 3415–3420

    Google Scholar 

  20. S. Stueflotten, T. Christensen, S. Iversen, J.O. Hellvik, K. Almas, T. Wien, A. Graav: An infrared fibre optic gas detection system. Europ. Conf. Industrial line spectrographic analysis, Rouen, p. 3. 1–3. 5 (1985).

    Google Scholar 

  21. K. Chan, T. Furuya, H. Ito and H. Inaba: Full optical remote measurement of CH4 gas in the near-infrared using a 5 Km long low-low optical fibre link. Opt. and Quantum Elec. 17, 153–155 (1985).

    Article  Google Scholar 

  22. S. Stueflotten: Fibre optics in Offshore Systems. Ericsson Review, F-61, 24–27 (1984).

    Google Scholar 

  23. L.A. Hilliard: Application of single optical fibres to remote Absorption measurements. Anal. Proc. 22, 210–211

    Google Scholar 

  24. S.Ji, G. Luthen, M. Kessler: Some quantitative aspects of micro light guide photometry of biological tissues. Ilphen aan den Rijn, Netherlands (Sijthoff and Noordhoff) p. 237–268 (1979).

    Google Scholar 

  25. H.M. Runciman, W.B. Allan and J.M. Ballantine: A thin film monitor using fibre optics. J.Sci. Instrum. 43, 812–815 (1966).

    Google Scholar 

  26. S. Klainer, T. Hirschfeld, H. Bowman, F. Milanovich, D. Perry and D. Johnson: A monitor for detecting nuclear-waste leakage in a subsurface repository. Report: Lawrence Berkeley Laboratory LBL-11981, UC-70 (1981).

    Google Scholar 

  27. F.P. Milanovic, T. Hirschfeld: Process, product, and waste stream monitoring with fibre optics. Advances in Instrumentation. Proceeding of ISA Int. Conf. 38, Pt. 1, 407–418 (1983).

    Google Scholar 

  28. F.P. Milanovich, T. Hirschfeld: Remote fibre fluorimetry. Intech, March 1984, 33–36 (1984).

    Google Scholar 

  29. J.P. Dakin and A.J. King: Limitations of a single optical fibre fluorimeter system due to background fluorescence. First Int. Conf. Opt. Fibre Sensors, IEE Vol. 221, 195–199 (1983).

    Google Scholar 

  30. R.E. Grojean and J.A. Sousa: Bifurcated fiber luminometer. Rev. Sci. Instrum. 51, 377–378 (1980).

    Google Scholar 

  31. G.C. Huth, A.D. Profio and D.R. Doiron: Early lung cancer detection with laser fiberoptic bronchoscope. Laser and Electrooptic 2, 35 (1978).

    Google Scholar 

  32. T. Vo Dinh and R.B. Gammage: Fibreoptic monitor of skin contamination. Chemistry and Industry, Sept. 707 (1980).

    Google Scholar 

  33. T. Lund: A fibre optics fluorimeter for algae detection and mapping. First Int. conf. Opt. Fibre Sensors, IEE. Vol 221, 190–194 (1983).

    Google Scholar 

  34. G. Kychakoff, M.A. Kimball-Line, R.K. Hanson: Fiber optic absorption/fluorescence probes for combustion measurements. Appl. Opt. 22, 1426–1427 (1983).

    Google Scholar 

  35. A.C. Eckbeth: Remote detection of CARS employing fibre optic guides. Appl.Opt. 18, 3215–3216 (1979).

    Google Scholar 

  36. R.E. Brenner and R.K. Chang: Utilization of optical fibres in remote inelastic light scattering probes in Fibres Optics, Advances in Research and Developmennt’ ed. B.Bendow and S.S. Mitra, Plenum Press New York. p. 625–640 (1979).

    Google Scholar 

  37. C.C. Johnson: Biomed. Sci. Instrum. 10, 45 (1974).

    Google Scholar 

  38. M.H.J. Landsmann: Fiberoptic reflection photometry Verenigde Reproductive Bedrijve, Groningen, Netherlands (1975).

    Google Scholar 

  39. B.G. Gamble, P.G. Hugenholtz, R.G. Monroe, M. Polanyi and A.S. Nadas: The use of fiberoptics in clinical cardiac catheterization. I. Intracardiac Oximetry Circution, 31, 328–343 (1965).

    Google Scholar 

  40. C.C. Johnson, R.D. Palm, D.C. Stewart and W.E. Martin: A solid state fiberoptic oximeter. J. Assoc. Advancement of Med. Instrum. 5, 77–83 (1971).

    Google Scholar 

  41. E.A. Woodroff and S. Koorajian: In vitro evaluation of in vivo fibreoptic oximeter. Med. Instrum. 7, 287–292 (1973).

    Google Scholar 

  42. M.L. Polanyi: Dye Curves. Ed. D.A. Bloomfield (University Park Press, Baltimore), 267–284 (1974).

    Google Scholar 

  43. M.L.J. Landsman, N. Knop, G.A. Mook, W.G. Zijlstra: Pfluegers Arch. 379, 59 (1979).

    Google Scholar 

  44. P. Extance, G.D. Pitt: Intelligent Turbidity Monitoring. Int. Conf. on Opt. Tech. in Flow Monitoring and Control, Hague (BHRA) 43–54 (1983).

    Google Scholar 

  45. D. Snel, G.D. Pitt: Oil Content Monitoring. Int. Conf. on Optc. tech. in Flow Monitoring and Control, Hague (BHRA) 27–42 (1983).

    Google Scholar 

  46. J.J. Perez: Perspectives des Mesures Spectrometriques pour 1’analyse de ligne industrielle et de controle des eaux. Eur. Conf. Industrial Line Spectrographic Analysis, Rouen, 2.1–2. 12 (1985).

    Google Scholar 

  47. L. Papa, E. Piano and C. Pontiggia: Turbidity Monitoring by Fiber Optics Instrumentation. Appl. Opt. 22, 375–376 (1983).

    Google Scholar 

  48. P.C.F. Borsboom, J.J. Ten Bosch: Fiber optic scattering monitor for application on bulk biological tissue, paper and plastic. S.P.I.E. Vol. 369, 417–421 (1983).

    Google Scholar 

  49. N.S. Kapany and D.A. Pontarelli: Photo refractometer. Extension of Sensitivity and Range.. Appl. Opt. 2, 425 (1963).

    Google Scholar 

  50. N. Abuaf, O.C. Jones and G.A. Zinner: Optical Probe for local void fraction and interface velocity measurements. Rev. Sci. Instr. 49, 1090–1094 (1978).

    Google Scholar 

  51. M.A. Vince, H. Breed, G. Krycuk and R.T. Lahey: Optical probe for high-temperature local void fraction determination. Appl. Opt. 21, 886–892 (1982)

    Google Scholar 

  52. N.S. Kapany and J.N. Pike: Fibre Optics. A Photorefractometer. J. Opt. Soc. Am. 47, 1109–1116 (1957).

    Google Scholar 

  53. D.J. David, D. Shaw, H. Tucker and F.C. Unterleitner. Rev. Sci. Instr. 47, 989 (1976).

    Google Scholar 

  54. E. Karrer and R.S. Orr: J. Opt. Soc. Am 36, 42–46 (1946).

    Article  Google Scholar 

  55. T. Takeo and H. Hathori: Jap. P. Appl. Phys. 21, 1509–1512 (1982).

    Google Scholar 

  56. A.L. Harmer: Optical Fibre Refractometer using attenuation of cladding modes. First Int. Conf. on Opt. Fibre Sensors, London, I.E.E. Vol 221, p. 104–108 (1983).

    Google Scholar 

  57. J.I. Peterson, S.R. Goldstein, R.V. Fitzgerald Anal. Chem. 52, 864 (1980).

    Google Scholar 

  58. D.R. Markle, D.A. Mc Guire, S.R. Goldstein, R.E. Patterson, R.M. Watson in 1981 Advances in Bioengineering, Ed. D.C. Viano (Am. Soc. of Mech. Eng., New York, p 123 (1981).

    Google Scholar 

  59. G.A. Tait, R.B Young, G.J. Wilson, D.J. Steward, D.C. Mac Gregor. Am. J. Physiol. Heart Circ. Physiol. 12, H 1027 (1982).

    Google Scholar 

  60. R.M. Watson, D.R. Markle, Y.M.Ro, S.R. Goldstein, D.A. Mc Guive, J.L. Peterson, R. E. Patterson. Am. J. Heart Circ. Physiol. 15, H232 (1984).

    Google Scholar 

  61. G.F Kirkbrigth, R. Narayanaswamy and N.A. Welti Fibreoptic pH Probe based on the use of an immobilised colorimetric indicator. Analyst. 109, 1025–1028 (1984).

    Google Scholar 

  62. L. A. Saari arid W.R. Seitz. pH sensor based on immobilized fluoresceinamine Anal. Chem 54, 821–823, 1982.

    Google Scholar 

  63. N. Optiz and D.W. Lubbers. New fluorescence photometrical techniques for simultaneous and continuous measurements of ionic strength and hydrogen ion activities. Sensors and Actuators 4., 473–479 (1983).

    Google Scholar 

  64. J.I. Peterson, R.V. Fitzgerald and D.K. Buckhold. Fibre Optic probe for in vivo measurement of oxygen partial pressure. Anal. Chem. 56, 62–67, 1984.

    Article  Google Scholar 

  65. D.W. Lubbers and N.Opitz. Optical Fluorescence Sensors for continuous measurement of chemical concentrations in biological systems. Sensors and Actuator 4, 641–654, 1983.

    Google Scholar 

  66. S. Mansouri and J.S. Schultz. A miniature optical glucose sensor based on affinity binding. Bio/Technology, 885–889, Oct. 1984.

    Google Scholar 

  67. R.M. Sutherland, C. Dähne, J.F. Place and A.S. Ringrose. Optical detection of antibody - antigen reactions at a glass liquid interface. Clin. Chem. 30 /9, 1533–1538 (1934).

    Google Scholar 

  68. R.M. Sutherland, C. Dähne, J.F.Place and A.S. Ringrose. Immunoassays at a quartz-liquid interface: Theory, Instrumentation and Preliminary Application to the Fluorescent Immunoassay of Human Immunoglobulin G. J. Immunological Methods 74, 253–265. (1984)

    Article  Google Scholar 

  69. Lee E.H, Benner R.E., Fenn J.B. and Chang R.K. Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation. Appl. Opt. 18, 862–870. (1979)

    Google Scholar 

  70. Carniglia C.K., Mandel L. and Drexhage H. Absorption and emission of evanescent photons. J. Opt. Soc. Am. 62, 479–486. (1972)

    Article  Google Scholar 

  71. B.Liedberg, C. Nylander and I. Lundstrom. Surface Plasmon Reasonance for Gas detection and biosensing. Sensors and Actuators, 4, 299–304, 1983.

    Google Scholar 

  72. I.Pockrand, J.D. Swalen, J.G. Gordon and M.R. Philpott. Surface Plasmon Spectroscopy of Organic Mondlayer Assemblies. Surface Science 74, 237–244, 1977.

    Google Scholar 

  73. C.Nylander, B.Liedberg and T.Lind. Gas Detection by means of surface plasmon resonance. Sensors and Actuators 3, 79–88, 1982.

    Google Scholar 

  74. M.T. Flanagan, R.H. Pantell. Surface Plasmon Resonance and Immunosensors. Electronics Letters 20, 968–970, 1984.

    Article  Google Scholar 

  75. M.A. Butler. Optical fiber hydrogen Sensor. Appl. Phys. Lett. 45, 1007–1009 (1984).

    Article  Google Scholar 

  76. D.H. McQueen. A simplified open photoacoustic cell and its applications. J. Phys. E.:Sci. Instrum. 16, 738–739, 1983.

    Article  Google Scholar 

  77. D.H. Leslie, G.L. Trusty, A. Dandridge and T.G. Giallorenzi. Fibre-Optic Spectrophone. Elec. Lett. 17, 581, 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Harmer, A.L. (1987). Guided-Wave Chemical Sensors. In: Chester, A.N., Martellucci, S., Scheggi, A.M.V. (eds) Optical Fiber Sensors. NATO ASI Series, vol 132. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3611-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3611-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8116-0

  • Online ISBN: 978-94-009-3611-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics