Skip to main content

Holography in Medicine and Biology - State of the Art and the Problem of Increasing Militarization

  • Chapter
Optical Metrology

Part of the book series: NATO ASI Series ((NSSE,volume 131))

Abstract

Although commonly regarded as part of physical optics holography has turned out to be a widespread, interdisciplinary field of science. This is not only understandable from the fact that the principle of holograhy is not restricted to optical waves but can be applied to any wave phenomenon. Moreover, it can be explained by understanding holography in more general terms e.g. complex spatial filtering [1] or by demonstrating the mathematical similarity to communication theory on the basis of Fourier transform [2]. Accordingly, applications of that basic principle have been attempted in a variety of sciences. Thus, today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Since most of the underlying physical principles are explained in detail in other contributions to this Institute this article is confined to applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [3,4,5,6,7,8], in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. Thus, concerning the topics of this Institute it seems to be appropriate to emphasize optical holograhic methods, especially the applications of holographic interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Felleppa, E.J.: Biomedical applications of holography, Physics Today 22, 25 (1969).

    Article  Google Scholar 

  2. Leith, E.N. et al.: Reconstructed wavefronts and communication theory, J. Opt. Soc. Amer. 52 1123 (1962).

    Article  ADS  Google Scholar 

  3. Greguss, P. (ed.): Holography in Medicine, IPC Science and Technol. Press (1975).

    Google Scholar 

  4. Hoke, M. and G. von Bally (eds.): Proc. Symp. 1976 Spec. Res. Area 88 and Int. Conf. on Electrocochleography and Holography in Medicine, Muenster (1976).

    Google Scholar 

  5. Marom, E., Friesem, A.A. and Wiener, E. (eds.): Proc. Int. Conf. Appl. Hol. and Opt. ., Pergamon Press (1977).

    Google Scholar 

  6. von Bally, G. (ed.): Holography in Medicine and Biology, Springer-Series in Optical Sciences, Springer-Verlag, Heidelberg, Berlin, New York, Vol. 18 (1979).

    Google Scholar 

  7. Shankar, P.M. et. al.: Applications of Coherent Optics and Holography in Biomedical Engineering, IEEE Transactions on Biomedical Engineering 29, 8–15 (1982).

    Article  MathSciNet  Google Scholar 

  8. von Bally, G. and P. Greguss (eds.): Optics in Biomedical Sciences, Springer-Series in Optical Sciences, Springer-Verlag, Heidelberg, Berlin, New York, Vol. 31 (1982).

    Google Scholar 

  9. von Bally, G.: Remarks of the chairman: scientists, scientific societies, and military research, in: D. Vukicevic (ed.): Holographic Data Nondestructive Testing, SPIE 370, 26 (1983).

    Google Scholar 

  10. Greguss, P.: Thoughts on the future of holograhy in biology and medicine, Optics and Laser Technol. 253 (1975).

    Google Scholar 

  11. Tsujiuchi, J.: Holograhic stereograms as a tool of non-destructive testing, SPIE 370, 17 (1983).

    Google Scholar 

  12. Vaughan, K.D. et al.: Holography of the eye: a critical review, in: M.L. Wolbarsht (ed.): Laser applications in medicine and biology, Plenum Press (1974), 77 pp.

    Google Scholar 

  13. Calkins, J.L.: Fundus camera holography, see [3], 85 pp.

    Google Scholar 

  14. Tokuda, A.R. et al.: Development of a holocamera for 3-D microscopy of the unanesthetized human eye, J. Opt. Soc. Am. 68, 1382 (1978).

    ADS  Google Scholar 

  15. Ohzu, H. et al.: Application of holography in opthalmology, see [6], pp. 133.

    Google Scholar 

  16. Ansley, D.A.: Techniques for pulsed laser holography of people, Appl. Opt., 815 (1970).

    Google Scholar 

  17. Bexon, R. et al.: In-line holography and the assessment of aerosols, Optics and Laser Technol. 8, 161 (1976).

    Article  ADS  Google Scholar 

  18. Bals, E.J.: The principles of and new developments in ultra low volume spraying, Proc. 5th Br. Insectic. Fungic. Conf. 189 (1969).

    Google Scholar 

  19. Hadbawnik, D.: Holographische Endoskopie, Optik 45, 21 (1976).

    Google Scholar 

  20. Yonemura, M. et al.: Endoscopic hologram interferometry using fiber optics, Appl. Opt. 20, 1664 (1981).

    Article  ADS  Google Scholar 

  21. von Bally, G.: Otoscopic investigations by holographic interferometry: a fiber endoscopic approach using a pulsed ruby laser system, see [8], pp. 110.

    Google Scholar 

  22. Dudderar, T.D. et al.: Remote vibration measurement by time averaged holographic interferometry, Proc. Vth Int. Cong. Exp. Mech., Montreal, 362 (1984).

    Google Scholar 

  23. von Bally, G. et al.: Gradient-index optical systems in holographic endoscopy, Appl. Opt. 23, 1725 (1984).

    Article  ADS  Google Scholar 

  24. Tricoles, G. et al.: Microwave holography: applications and techniques, Proc. IEEE. 65, 108 (1977).

    Article  ADS  Google Scholar 

  25. Farhat, N.H. et al.: Millimeter wave imaging of concealed weapons, Proc. IEEE 59, 1383 (1971).

    Article  Google Scholar 

  26. Proc. Int. Symp. Acoust. Holography, Plenum Press (1967) et seq.

    Google Scholar 

  27. Greguss, P.: Optical evaluation of ultrasonic scattering in animal tissue, Ann. New York Acad. Sci. 267, 312 (1976).

    Article  ADS  Google Scholar 

  28. Hildebrand, B.P. et al.: An introduction to acoustical holography, Plenum Press (1972).

    Google Scholar 

  29. Waidelich, W. et al.: Methoden der akustischen Holographie, in: Medizinische Physik in Forschung und Praxis, De Gruyter (1976), 146 pp.

    Google Scholar 

  30. Caulfield, H. et al.: The applications of holography Wiley- Interscience, New York (1970).

    Google Scholar 

  31. New harmonic technique opens up extreme UV, Laser and Applications 40 (1983).

    Google Scholar 

  32. Solem, J.G.: X-ray biomicroholography, Opt. Eng. 23, 193 (1984).

    Google Scholar 

  33. Groh, G.: Tomosynthesis and coded aperture imaging: new approaches to three-dimensional imaging in diagnostic radiography, Proc.R.Soc. Lond. B. 195, 299 (1977).

    Article  ADS  Google Scholar 

  34. Sugimura, K. et al.: Clinical application of multiplex holography, SPIE 370, 20 (1983).

    Google Scholar 

  35. Greguss, P.: Laser as a probe in biomedical research, in: Waidelich, W. (ed.): Laser 75 Optoelectronics Conference Proc., Munich, (1975), pp. 155.

    Google Scholar 

  36. van Ligten, R.F.: Holographic microscopy in exobiology, see [3], 44 pp.

    Google Scholar 

  37. Ellis, G.: Holomicrography: transformation of image during reconstruction a posteriori, Science 154, 1195 (1966).

    Article  ADS  Google Scholar 

  38. Haendler, E. et al.: Contribution to experimental holographic microscopy, see [3], pp. 51.

    Google Scholar 

  39. Stroke, G.W. et al.: Image improvement and three-dimensional reconstruction using holographic image processing, Proc. IEEE 65, 39 (1977).

    Article  ADS  Google Scholar 

  40. Stroke, G.W. et al.: Image improvement in high-resolution electron microscopy using holographic image deconvolution, Optik 41, 319 (1974).

    Google Scholar 

  41. Stroke, G.W.: Optical computing, IEEE Spec. 9, 24 (1972).

    Article  Google Scholar 

  42. Barett, H.H. et al.: Fresnel zone plate imaging in radiology and nuclear medicine, Opt. Eng. 12, 8 (1973).

    Google Scholar 

  43. Weiss, H. et al.: Coded aperture imaging with X-rays (flashing tomosynthesis) Opt. Acta 24, 305 (1977).

    Article  ADS  Google Scholar 

  44. Caulfield, H.J.: The applications of coherent optical image processing in medicine and biology, see [3], pp. 39

    Google Scholar 

  45. Almeida, S. et al.: Water pollution monitoring using matched spatial filtering, Appl. Opt. 15, 510 (1976).

    Article  ADS  Google Scholar 

  46. Casasent, D. et al.: New optical transforms for pattern recognition. Proc. IEEE 65, 77 (1977).

    Article  Google Scholar 

  47. Lohmann, A.W. et al.: Computer generated spatial filters for coherent optical data processing, Appl. Opt. 7 651 (1968).

    Article  ADS  Google Scholar 

  48. Stroke, G.W. et al.: Holographic image restoration using Fourier spectrum analysis of blurred photographs in computer-aided synthesis of Wiener filters, Phys. Lett. 51A, 383 (1975).

    Article  Google Scholar 

  49. Huang, Th.S.: Computer holography and its possible applications to medical diagnosis, see [3], pp. 36.

    Google Scholar 

  50. Knox, G. et al.: Holographic motion picture microscopy, Proc. Roy. Soc. Lond.B. 174, 115 (1969).

    Article  ADS  Google Scholar 

  51. van der Haagen, G.A.: Ein Mikroskop mit holographischer 16-mm-Filmaufzeichnung, Laser 2, (1970).

    Google Scholar 

  52. Khanna, S.M. et al.: Tympanic membrane vibrations in cats studied by time-averaged holography, J. Acoust. Soc. Amer. 51, 1904 (1972).

    Article  ADS  Google Scholar 

  53. Tonndorf, J. et al.: Tympanic membrane vibrations in human cadaver ears studied by time-averaged holography, J. Acoust. Soc. Amer. 52, 1221 (1972).

    Article  ADS  Google Scholar 

  54. Khanna, S.M. et al.: The vibratory pattern of the round window in cats, J. Acoust. Soc. Amer. 50, 1475 (1971).

    Article  ADS  Google Scholar 

  55. Gundersen, T. et al.: Holographic vibration analysis of the ossicular chain, Acta Otolaryngol. 82, 16 (1976).

    Article  Google Scholar 

  56. Hogmoen, K. et al.: Holographic investigation of stapes foot plate measurements, Acustica 37, 198 (1977).

    Google Scholar 

  57. Greguss, P.: Holograhic interferometry in biomedical sciences, Optics and Laser Technol. 8, 153 (1976).

    Article  ADS  Google Scholar 

  58. Haeusler, G. et al.: Holograhische Deformationsmessungen zur Optimierung von HueftgelenksImplantaten, see [4], pp. 349.

    Google Scholar 

  59. Hanser, U.: Anwendung der holographischen Interferometrie in der experimentellen Orthopaedie, see [4], pp. 343.

    Google Scholar 

  60. Hardinge, K. et al.: A preliminary study of fracture fixation using holographic interferometry, see [4], pp. 307.

    Google Scholar 

  61. Vukicevic, D. et al.: Holographic investigation of mechanical characteristics of the complex leg-foot in conditions of lesion and reconstruction, see [6], pp. 34.

    Google Scholar 

  62. Kinder, J. et al.: Holographische Untersuchungen des thermischen Verhaltens von Schmelz, Dentin und ausgewaehlten Dentalstoffen, see [4], pp. 301.

    Google Scholar 

  63. Sieger, C. et al.: Measurement of vibration waveforms using temporally modulated holography, see [6], pp. 247.

    Google Scholar 

  64. Atkinson, J.T. et al.: Measurement of the area of real contact between, and wear of, articulating surfaces using holographic interferometry, see [5], pp. 289.

    Google Scholar 

  65. Lalor, M. et al.: Holographic studies of wear in implant materials and devices, see [6], pp. 20.

    Google Scholar 

  66. Wagner, J. et al.: Application de l’interferométrie holographique à l’etude du complexe tibio-pèronier chargè axialement, Acta Orthop. Belgica 41, 24 (1975).

    Google Scholar 

  67. Vukicevic, D. et al.: Holographie investigations of the human pelvis, see [8], pp. 138.

    Google Scholar 

  68. Hanser, U.: Quantitative evaluation of holographic deformation investigations in experimental orthopedics, see [6], pp. 27.

    Google Scholar 

  69. Wesendahl, Th. et al.: Untersuchung des Verformungsverhaltens menschlicher Wirbelkoerper mittels holographischer Interferometrie, Laser u. Elektrooptik 1., 37 (1977).

    Google Scholar 

  70. Piwernetz, K. et al.: Elastomechnical properties of trabecular bone from the human vertebral body, see [6], pp. 15.

    Google Scholar 

  71. Piwernetz, K. et al.: Holography in orthopedics, see [6], pp. 7.

    Google Scholar 

  72. Pryputniewicz, R. et al.: Determination of arbitrary tooth displacements, J. Dent. Res. 57, 663 (1978).

    Article  Google Scholar 

  73. Dirtoft, I.: Holographic measurement of deformation in complete upper dentures - clinical application, see [8], pp. 100.

    Google Scholar 

  74. Pavlin, P. et al.: Strain distribution in the facial skeleton arising from orthodontic appliance activity, see [6], pp. 177.

    Google Scholar 

  75. Bjelkhagen, H.: Holography in dentistry, see [6], pp. 157.

    Google Scholar 

  76. Dirtoft, I.: Dental Holography, SPIE 370, 108 (1983).

    Google Scholar 

  77. Hinsch, K.: Einsatzmoeglichkeiten kohaerent optischer Methoden in der Bioindikation, Angew. Botanik 55, 179 (1981).

    Google Scholar 

  78. Lunazzi, J. et al.: A simple set-up for using holograhic interferometry in studies on seeds, see [6], pp. 77.

    Google Scholar 

  79. Brooks, R.E. et al.: (9A9) Pulsed laser holograms, IEEE QE-2, 275 (1966).

    Google Scholar 

  80. Dancer, A.L. et al.: Holographic interferometry applied to the investigation of tympanic-membrane displacements in guinea pig ears subjected to acoustic impulses, J. Acoust. Soc. Amer. 58, 223 (1975).

    Article  ADS  Google Scholar 

  81. Smigielsky, P. et al.: Application de l’interfèromètrie holographique a l’ètude des dèformations du tympan du cobay sous l’ effet de bruits de durèe brève, Nouv. Rev. Optique 6, 49 (1975).

    Article  ADS  Google Scholar 

  82. von Bally, G.: Otological investigations in living man using holographie interferometry, see [6], pp. 198.

    Google Scholar 

  83. Wedendal, P. et al.: Holography in dentistry, in: M.L. Wolbarsht (ed.), Laser applications in medicine and biology, Plenum Press, (1977) pp. 221.

    Google Scholar 

  84. Pryputniewicz, R.: Holographie determination of rigid body motions, and application of the method to orthodontics, Appl. Opt. IS, 1442 (1979).

    Google Scholar 

  85. Zivi, S.M. et al.: Chest motion visualized by holographic interferometry, Med. Res. Eng. 9, 5 (1970).

    Google Scholar 

  86. Bjelkhagen, H.: Development of hologram interferometry, in particular pulsed sandwich holography, for engineering uses as well as applications within medicine and odontology, Dissertation, Stockholm (1978).

    Google Scholar 

  87. Pawluczyk, R. et al.: Holographic vibration analysis of the frontal part of the human neck during singing, see [8], pp. 131.

    Google Scholar 

  88. Løkberg, 0.: Speckle techniques for use in biology and medicine, see [8], pp. 144.

    Google Scholar 

  89. Løkberg, O. et al.: Use of ESPI to measure the vibration of the human eardrum in-vivo and other biological movements, see [6], pp. 212.

    Google Scholar 

  90. Løkberg, 0. et al.: Bio-medical applications of ESPI, see [8], pp. 154.

    Google Scholar 

  91. von Bally, G. et al.: Potentials of holographic vibration analysis of the human skull, Arch. Otorhinolaryngol. Suppl. II (1984) (in press).

    Google Scholar 

  92. Ferrano, G. et al.: Compensation of rigid body motions in holographic interferometry, see [6], pp. 258.

    Google Scholar 

  93. Piwernetz, K.: A posteriori compensation for rigid body motion in holographic interferometry by means of a Moirè-technique, Optica Acta 24, 201 (1977).

    Article  ADS  Google Scholar 

  94. Abramson, N.: Sandwich holography and its applicability to biomedical investigations, see [6], pp. 235.

    Google Scholar 

  95. Bjelkhagen, H.: Pulsed sandwich holography, Appl. Opt. 16, 172 (1977).

    Article  Google Scholar 

  96. Statement of European Physicists, Europhysics News 13. 2 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

von Bally, G. (1987). Holography in Medicine and Biology - State of the Art and the Problem of Increasing Militarization. In: Soares, O.D.D. (eds) Optical Metrology. NATO ASI Series, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3609-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3609-6_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8115-3

  • Online ISBN: 978-94-009-3609-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics