Skip to main content

Principles of Ultrasound Used for Hyperthermia

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 127))

Abstract

One difficult and demanding challenge in the field of hyperthermia is the development of sources which can produce acceptable temperature distributions throughout the treatment field, while sparing normal tissues outside this region. The importance of reaching the temperature target without cold spots, cannot be overemphasized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arditi M, Foster FS, Hunt JW: Transient Fields of Concave Annular Arrays. Ultrasonic Imaging 3, 37–61, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Augustine LJ, Anderson J: An Algorithm for the Design of Transformerless Broadband Equalizers of Ultrasonic Transducers. J. Acoust. Soc. Amer. 66, 629–635, 1979.

    Article  Google Scholar 

  3. Beard RE, Magin RL, Frizzell MA, Cain CA: An Annular Focus Ultrasonic Lens for Local Hyperthermia Treatment of Small Tumors. Ultrasound in Med. and Biol. 8, 177–184, 1982.

    Article  CAS  Google Scholar 

  4. Biquard P, Langevin P:Langevin. Ultrasonics 10, 213, 1972.

    Article  Google Scholar 

  5. Corry PM, Barlogie B, Tilchen EJ, Armour EP: Ultrasound-induced Hyperthermia for the Treatment of Human Superficial Tumors. Int. J. Radiat. Oncol. Biol. Phys. 8, 1225–1229, 1982.

    PubMed  CAS  Google Scholar 

  6. Curie PJ, Curie P.: Crystal Physics: Development of Pressure of Polar Electricity in Hemihedral Crystals with Inclined Faces. Comttes Rendus Hebdomadairs des Seances de L’Acedemia des Sciences, Paris 91, 294, 1880. Reprinted in Lindsay RB (ed): Acoustics; Historical and Philosophical Development. Stroudsburg, Pa, Douden, Hutchinson and Ross, Publ. p. 373, 1973.

    Google Scholar 

  7. Desilets CS, Fraser JD, Kino GS: The Design of Efficient Blood-band Piezoelectric Transducers. IEEE Trans. Son. Ultrason. SU-25, 115–125, 1978.

    Article  Google Scholar 

  8. Dewey WC, Hopwood LE, Sapareto SA and Gerweck LE: Cellular Responses to Combinations of Hyperthermia and Radiation. Radiology 123, 463, 1977.

    PubMed  CAS  Google Scholar 

  9. Dewhirst MW, Sim DA, Sapareto S and Connor WG: Importance of Minimum Tumor Temperature in Determining Early and Long-term Responses of Spontaneous Canine and Feline Tumors To Heat and Radiation. Cancer Research 44, 43–50, 1984.

    PubMed  CAS  Google Scholar 

  10. Dickinson RJ: A Non-rigid Mosaic Applicator for Local Ultrasound Hyperthermia. In Hyperthermia Oncology, 1, 671–674, 1984.

    Google Scholar 

  11. Dunn F, Frizzell LA: Bioeffects of ultrasound. In Therapeutic Heat and Cold, Lehmount JF (ed) Williams and Wilkins Publ. 386–403, 1982.

    Google Scholar 

  12. Fessenden P, Lee ER, Anderson TL, Strohbehn JW, Meyer JL, Samulski IV, Marmor JB: Experience with a Multitransducer Ultrasound System for Localized Hyperthermia of Deep Tissues. IEEE Trans. Biomed. Eng. BME-31, 126–135, 1984.

    Article  Google Scholar 

  13. Foster FS, Patterson MS, Arditi M and Hunt JW: The Conical Scanner: A Two Transducer Ultrasound Scatter Imaging Technique. Ultrasonic Imaging 3, 62–86, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Freundlich H, Sollher K., Rogowski F. Klin Wochenschr 11, 1512, 1932.

    Article  Google Scholar 

  15. Goss SA, Frizzell LA and Dunn F: Ultrasonic Absorption and Attenuation in Mammalian Tissues. Ultrasound in Med and Biology 5, 181–186, 1979.

    Article  CAS  Google Scholar 

  16. Hamegawat and Yosioko K: Acoustic Radiation Force on Fused-Silian Spheres. J. Acoust. Soc. Am. 58, 581–585, 1975.

    Article  Google Scholar 

  17. Higgins PD, Zeng X-W, Zagzebski JA, Paliwal BR: Versatility of Distributed Focus Ultrasound in Treatment of Superficial Lesions. Int. J. Rad. Oncol. Biol. Phys. 10, 1923–1931, 1984.

    Article  CAS  Google Scholar 

  18. Horvath J: Ultrasschallwirkund bein menschlichen Sarkom. Strahlentherapie 75, 119, 1944.

    Google Scholar 

  19. Horvath J: Ubev die wirking der Ultraschallwellen auf das menschliche Karzinom. Klin Prax 1, 10, 1946.

    PubMed  CAS  Google Scholar 

  20. Horvath J: Uberden Einfluss: Von ULtraschallwellen auf das Karzinon. Asklepios 1, 1, 1947.

    Google Scholar 

  21. Horvath J: Morphologische Untersuchungen uber die wirkung der Ultrasahallwellen auf das Korzinomgewebe. Strahlentherapie 17, 279, 1948.

    Google Scholar 

  22. Hueter FF, Bolt RH: Sonics, Wiley, New York, 1955.

    Google Scholar 

  23. Hunt JW, Lockwood G, Worthington A, Hutchins D, Mare H, Taylor R: Design of Conical Transducers to Produce Strongly Focussed Ultrasound Beams for Deep Heating. Submitted to The International Journal of Hyperthermia.

    Google Scholar 

  24. Hunt JW, Arditi M, Foster FS: Ultrasound Transducers for Pulse-echo medical imaging. IEEE Transactions Biomed. Eng. BME-30, 453–481, 1983.

    Article  Google Scholar 

  25. Hutchins DA, Archer-Hall JA: Particle Velocity Near-fields of Disk Radiators with Variable Drive. Acustica 53, 123–131, 1983.

    Google Scholar 

  26. Hynynen K, Watmough DJ, Mollard JR, Fuller M: Local Hyperthermia Induced by Focussed and Overlapping Ultrasonic Fields - an in vivo Demonstration. Ultrasound in Med. and Biol. 9, 621–627, 1983.

    Article  CAS  Google Scholar 

  27. Kinsler LE, Frey P: Fundamentals of Acoustics, Wiley, New York, 1962.

    Google Scholar 

  28. Kossoff G: Analysis of Focusing Action of Spherically Curved Transducers. Ultrasound Med. Biol. 5, 359–365, 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Kremkau FW: Cancer Therapy With Ultrasound: A Historical Review. Journal of Clinical Ultrasound 7, 287–300, 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Krimholt R, Ludom DA, Matthaei GL: New Equivalent Circuits for Elementary Piezoelectric Transducers. Electron. Lett. 6, 398–399, 1970.

    Article  Google Scholar 

  31. Langevin P: British Patent Specifications, IYS, 457, No. 145, 691, 1920.

    Google Scholar 

  32. Lele PP: An Annular Ultrasonic Lens for Produuction of Uniform Hyperthermia in Cancer Therapy, (Letter). Ultrasound Med. Biol. 7, 191–193, 1981.

    Article  Google Scholar 

  33. Lele PP: Local Hyperthermia by Ultrasound in Physical Aspects of Hyperthermia. Nusshaum GH (ed), American Institute of Physics, New York, 363–440, 1982.

    Google Scholar 

  34. Lele PP: Ultrasound: Is it the Modality of Choice for Controlling Localiszed Heating of Deep Tumors. In Hyperthermia Oncology 2, Overgaard J (ed), Taylor and Francis, London and Philadelphia, 129–155, 1984.

    Google Scholar 

  35. Lizzi FL, Coleman DJ, Driller J et al: Analytical Thermal Model for Scleral and Chorio-retinal Lesions Produced with High-intensity Focussed Ultrasound. J. of Ultrasound in Med. 2, 36, 1983.

    Google Scholar 

  36. Lockwood JC, Willette: High Speed Method for Computing the Exact Solution for the Pressure Variations in the Nearfield of a Baffled Piston. J. Acoust. Soc. Amer. 53, 735–741, 1973.

    Article  Google Scholar 

  37. Marmor JB, Pounds D, Postic TB, Hahn GM: Treatment of Superficial Human Neoplasms by Local Hyperthermia by Ultrasound. Cancer 43, 188–197, 1978.

    Article  Google Scholar 

  38. Martin CJ, Law ANR: The Use of Thermistor Probes to Measure Energy Distributions in Ultrasound Fields. Ultrasonics, 19, 127–134, 1980.

    Article  Google Scholar 

  39. Martin CJ, Law ANR: Design of Thermistor Probes for Measurements of Ultrasound Intensity Distributions. Ultrasonics 21, 85–90, 1982.

    Article  Google Scholar 

  40. Martin CJ, Law ANR:Design of thermister probes for measurement of ultrasound intensity distributions. Ultrasonics 22, 85–90, 1983.

    Article  Google Scholar 

  41. Meeks SW, Tring RY: Effects of Static and Dynamic Stress on the Piezoelectric and Dielectric Properties of PVF, J. Acoust. Soc. Am. 24, 1681–1686, 1983.

    Article  Google Scholar 

  42. Munro P, Hill RP, Hunt JW: The Development of Improved Ultrasound Heaters Suitable for Superficial Tissue Heating, Med. Phys. 9, 886–897, 1982.

    Article  Google Scholar 

  43. NCRP Report No. 74: Biological Effects of Ultrasound: Mechanisms and Clinical Implications, National Council of Radiation Protection and Measurements, Bethesda, Maryland, 20814, U.S.A.

    Google Scholar 

  44. Oberhettinger F: On Transient Solution of the “Buffled Piston” Problems. J. Res. Nat. Bur. Stand. 65, 1–6, 1961.

    Google Scholar 

  45. Penttinen A, Luukkala M: The Impulse Response and Pressure Nearfield of a Curved Ultrasound Radiator. J. Phys. D, 9, 1547–1557, 1976.

    Article  Google Scholar 

  46. Pohlman R, Richter R, Parow E: Uber die Ausbreitand und Absorption des Ultraschalls im menshleichen Gewebo und seintherapeutisch Wirkung an Ischias Plexusneuralgie. Dtsch Med Wochensche 65, 251–256, 1939.

    Article  Google Scholar 

  47. Pounds DW, Britt RD: Single Ultrasonic Crystal Techniques for Generating Uniform Temperature Distributions in Homogeneously Perfused Tissues. IEEE Transactions on Sonics and Ultrasonics, SU-31, 5, 482–490, 1984.

    Google Scholar 

  48. Sapareto SA, Hopwood LE, Dewey WC, Raju, MJ, and Gray JW: Effects of Hyperthermia in Survival and Progression of Chinese Hamster Cells. Cancer Research 38, 393–400, 1978.

    PubMed  CAS  Google Scholar 

  49. Strutt JW (Lord Rayleigh): Theory of Sound 2, Dover, New York, 1945.

    Google Scholar 

  50. Swartz RG, Plummer JD: Monolithic Silicon - PVDF Arrays for Ultrasonic Imaging in Acoustic Imaging 8, Metherell AF (ed). Plenum Press, New York, 69–76, 1979.

    Google Scholar 

  51. Underwood HP, Burdette EC, Ocheltree KB, Magin RL: Investigation of a Square Multielement Ultrasonic Applicator with Independent Element Control for Hyperthermia, Submitted to International Journal of Hyperthermia.

    Google Scholar 

  52. Vilkomerson D: Acoustic Imaging with Thin Annular Apertures: In Acoustic Holography, 5, Green PS (ed), Plenum Press, New York, 121–143, 1974.

    Google Scholar 

  53. Wells PNT: Physical Principles of Ultrasonic Dynamics, Academic Press, London, 1969.

    Google Scholar 

  54. Wells PNT: Biomedical Ultrasonics, Academic Press. London, New York, San Francisco, pp. 1–13, 1977.

    Google Scholar 

  55. Woeber K: Vorleufige Erfahrungenmit Ultraschsstnolltherapie dei Dermatosen. Strahlentherapie 79, 599–1949.

    Google Scholar 

  56. Woeber K: Biological Basis and Application in Medicine. Ultrasonics Biol Med 1, 18, 1956.

    Google Scholar 

  57. Zemanek J: Beam Behavior within the Nearfield of a Vibrating Piston. J. Acoust. Soc. Amer. 49, 181–91, 1971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Hunt, J.W. (1987). Principles of Ultrasound Used for Hyperthermia. In: Field, S.B., Franconi, C. (eds) Physics and Technology of Hyperthermia. NATO ASI Series, vol 127. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3597-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3597-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8109-2

  • Online ISBN: 978-94-009-3597-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics