Skip to main content

Evolution of Lengthscales in Partially Solidified Systems

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 125))

Abstract

The effect of capillarity-driven diffusion on the recalescence of mushy zones is studied in pure materials. A global description of this phenomenon is presented which relates a characteristic lengthscale of the microstructure, R̄, to the mean undercooling of the mixture, <ΔT>. Experiments on mushy zones in succinonitrile, ethylene carbonate and ice/water indicate that the mean undercooling decays as t-1/3, implying that the characteristic lengthscale of the system grows as t1/3. This result is in agreement with the interpretation of coarsening as a statistical ripening phenomenon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Trivedi, “Theory of Capillarity,” in Lectures on the Theory of Phase Transformations, H. Aaronson, ed., The Metallurgical Society/AIME, New York (1975), pp. 51–81.

    Google Scholar 

  2. T. Z. Kattamis, J. C. Coughlin and M. C. Flemings, “Influence of Coarsening on Dendrite Arm Spacing of Aluminum-Copper Alloys,” Trans. AIME, 234 (1967), pp. 1504–1511.

    Google Scholar 

  3. P. W. Voorhees, “The Theory of Ostwald Ripening,” J. Stat. Phys., 38 (1985), pp. 231–252.

    Google Scholar 

  4. T. Z. Kattamis and M. C. Flemings, “Dendrite Structure and Grain Size of Undercooled Melts,” Trans. AIME, 236 (1966), pp. 1523–1532.

    CAS  Google Scholar 

  5. M. Basaran, “Dendrite Coarsening and Microsegregati on in Al-Cu Alloys,” Met. Trans., 12A (1981), pp. 1235–1243.

    Google Scholar 

  6. J. J. Reeves and T. Z. Kattamis, “A Model for Isothermal Dendritic Coarsening,” Scripta Met., 5 (1971), pp. 223–230.

    Article  CAS  Google Scholar 

  7. N. J. Whisler and T. Z. Kattamis, “Dendritic Coarsening During Solidification,” J. Crystal Growth, 15 (1972), pp. 20–24.

    Article  Google Scholar 

  8. M. E. Glicksman and P. W. Voorhees, “Ostwald Ripening and Relaxation in Dendritic Structures,” Met. Trans., 15A (1984), pp. 995–1001.

    CAS  Google Scholar 

  9. R. T. DeHoff and C. V. Iswaran, “The Usefulness of Integral Mean Curvature Measurements in the Study of the Kinetics of Coarsening,” Met. Trans., 13A (1982), pp. 1384–1395.

    Google Scholar 

  10. R. T. DeHoff, private communication.

    Google Scholar 

  11. P. W. Voorhees, “Ostwald Ripening in Two-Phase Mixtures,” Ph.D. Dissertation, Rensselaer Polytechnic Institute (1982).

    Google Scholar 

  12. W. W. Mullins, “The Statistical Self-Similarity Hypothesis in Grain Growth and Particle Coarsening,” J. Appl. Phys., 59 (1986), pp. 1341–1349.

    Article  CAS  Google Scholar 

  13. M. E. Glicksman, R. J. Schaefer and J. D. Ayers, “Dendritic Growth — A Test of Theory,” Met. Trans., 7A (1976), pp. 1747–1759.

    CAS  Google Scholar 

  14. “The International Practical Temperature Scale of 1968,” Metrologia, 5 (1969), pp. 35–44.

    Google Scholar 

  15. J. A. Dantzig, “Improved Transient Response of Thermocouple Sensors,” Rev. Sci. Instrum., 56 (1985), pp. 723–725.

    Article  Google Scholar 

  16. P. W. Voorhees and M. E. Glicksman, “Thermal Measurement of Ostwald Ripening Kinetics in Partially Crystallized Mixtures,” J. Crystal Growth, 72 (1985), pp. 599–615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Marsh, S.P., Glicksman, M.E. (1987). Evolution of Lengthscales in Partially Solidified Systems. In: Loper, D.E. (eds) Structure and Dynamics of Partially Solidified Systems. NATO ASI Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3587-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3587-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8104-7

  • Online ISBN: 978-94-009-3587-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics