Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 125))

Abstract

Extraction of Belt from partial melts in the Earth’s interior requires both permeability and deformability of the solid matrix. With the aid of simple macroscopic analogs, including laboratory experiments, we show how creep deformation of the matrix can be incorporated in Darcy’s Law, leading to a quantitative assessment of how matrix compaction governs melt extraction. The most striking consequence of the resulting theory is the prediction of magmons: well-preserved, solitary waves of enhanced partial melt with wavelengths ~ kilometer. These vertically propagating waves might exist in the Earth’s mantle, causing episodicity in space and time of volcanic activity. However, geophysical and geochemical evidence remain elusive.

Contribution number 4352 from the Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barcilon, V. and Richter, F.M. 1986. Nonlinear waves in compacting media. J. Fluid Mech. 164, 429–448.

    Article  Google Scholar 

  • Bear, J. 1972. Dynamics of Fluids in Porous Media. American Elsevier, New York, 764 pp.

    Google Scholar 

  • Drew, D.A. 1971. Averaged field equations for two-phase media. Stud. in Applied Math. L(2), 133–166.

    Google Scholar 

  • Dullien, F.A.L. 1979. Porous Media Fluid Transport and Pore Structure. Academic Press, New York.

    Google Scholar 

  • Fowler, A.C. 1984. On the transport of moisture in polythermal glaciers. Geophys. Astrophys. Fluid Dyn. 29, 99–140.

    Article  Google Scholar 

  • Fowler, A.C. 1985. A mathematical model of magma transport in the asthenosphere. Geophys. Astrophys. Fluid Dyn. 33, 63–96.

    Article  Google Scholar 

  • McKenzie, D.P. 1984. The generation and compaction of partially molten rock. J. Petrology 25, 713–765.

    CAS  Google Scholar 

  • McKenzie, D.P. 1985. The extraction of magma from the crust and mantle. Earth Planet. Sci. Lett. 74, 81–91.

    Article  CAS  Google Scholar 

  • Nye, J.F. 1953. The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proc. Roy. Soc. London A219, 477–489.

    Google Scholar 

  • Olson, P. and Christensen, U. 1986. Solitary wave propagation in a fluid conduit within a viscous matrix. J. Geophys. Res. 91, 6367–6374.

    Article  Google Scholar 

  • Ribc, N.M. 1975. The deformation and compaction of partially molten zones. Geophys. J. Roy, astr. Soc. 83, 487–501.

    Google Scholar 

  • Richter, F.M. and McKenzie, D.P. 1984. Dynamical models for melt segregation from a dcformable matrix. J. Geology 92, 729–740.

    Article  CAS  Google Scholar 

  • Scott, D.R. and Stevenson, D.J. 1984. Magma solitons. Geophys. Res. Lett. 11, 1161–1164.

    Article  Google Scholar 

  • Scott, D.R. and Stevenson, D.J. 1986. Magma ascent by porous flow. J. Geophys. Res. 91, 9283–9296.

    Article  Google Scholar 

  • Scott, D.R., Stevenson, D.J., and Whitehead, J.A., Jr. 1986. Observations of solitary waves in a viscously deformable pipe. Nature 319, 759–761.

    Article  Google Scholar 

  • Sleep, N.H. 1974. Segregation of a magma from a mostly crystalline mush. Geol. Soc. Am. Bull. 85, 1225–1232.

    Article  Google Scholar 

  • Turcotte, D.L. 1982. Magma migration. Ann. Rev. Earth Planet. Sci. 10, 397–408.

    Article  Google Scholar 

  • von Bargen, N. and Waff, H.S. 1986. Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91, 9261–9276.

    Article  Google Scholar 

  • Whitehead, J.A. and Helfrich, K. 1986. The Korteweg-deVries equation from laboratory conduit and magma migration equations. Geophys. Res. Lett. 13, 545–546.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Stevenson, D.J., Scott, D.R. (1987). Melt Migration in Deformable Media. In: Loper, D.E. (eds) Structure and Dynamics of Partially Solidified Systems. NATO ASI Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3587-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3587-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8104-7

  • Online ISBN: 978-94-009-3587-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics