Skip to main content

The Role of Conjugate Convection in Magmatic Heat and Mass Transfer

  • Chapter
Structure and Dynamics of Partially Solidified Systems

Part of the book series: NATO ASI Series ((NSSE,volume 125))

Abstract

The crystallization history of magma chambers is intimately coupled to the heat transfer systematics of the surrounding wall rock. In this paper we investigate the thermal interaction between magmatic and hydrothermal convection. Two models of magmatic convection are addressed: compositionally and thermally dominated flow both driven by heat loss to a hydrotherm7al system. For compositionally driven flow in a porous medium the temperature along the wall rock-magma interface is found to be a weighted constant. For thermally driven flow temperatures are found to increase upward along the intrusive contact The steady state thickness of the solid grown into the magma chamber was found to be O(10m) for siliceous melts and O(.01m) for basic melts, the difference in these values being a direct result of their differing viscosities. These models suggest that hydrothermal circulation can effectively quench the interface at the intrusive contact, particularily for siliceous magmas. The high temperatures recorded in the hydrothermally altered country rock near intrusions either record a short lived transient condition or the passage of fluids which have been in intimate contact with the magma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chan, A. M. C, Smereka, P. and Shoukri, M., 1983, An approximate analytical solution to the freezing problem subject to convective cooling and with arbitrary initial liquid temperatures: Int. Jour. Heat Mass Transfer. 26. no. 11, p. 1712–1715.

    Article  CAS  Google Scholar 

  2. Nicolis, G. and Prigogine, L, 1977, Self-organization in Nonequilibrium Systems: John Wiley & Sons, Inc., 491 p.

    Google Scholar 

  3. Spera, F. J., 1980, Aspects of magma transport: in Hargraves, R. B., ed., Physics of Magmatic Processes, Princeton University Press, Princeton, New Jersey, p. 265–323.

    Google Scholar 

  4. Marsh, B. D., 1986, Magmatic convection: on the true magnitude of the Rayleigh number: Submitted to Proc. Nat. Acad. Sciences.

    Google Scholar 

  5. Bejan, A. and Anderson, R., 1981, Heat transfer across a vertical impermeable partition imbedded in porous medium: Int. Jour. Heat Mass Transfer. 24, no. 7, p. 1237–1244.

    Article  Google Scholar 

  6. Cathles, L. M., 1977, An analysis of the cooling of intrusives by ground-water convection which includes boiling: Economic Geology. 72, p. 804–826.

    Article  CAS  Google Scholar 

  7. Norton, D. and Knight, J., 1977, Transport phenomena in hydrothermal systems: cooling plutons: Am. Jour. Sci., 277, p. 937–981.

    Article  Google Scholar 

  8. Torrance, K. E. and Sheu, J. P., 1978, Heat transfer from plutons undergoing hydrothermal cooling and thermal cracking: Numerical Heat Transfer. 1, p. 147–161.

    Article  Google Scholar 

  9. Bergantz, G. W., 1985, Double-diffusive Boundary Layer Convection in a Porous Medium: Implications for Fractionation in Magma Chambers. M. S. Thesis, Georgia Institute of Technology, Atlanta, 91 p.

    Google Scholar 

  10. Cheng, P. and Minkowycz, W. J., 1977, Free Convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike: Jour. Geophys. Research. 82, no. 14, p. 2040–2044.

    Article  Google Scholar 

  11. Cheng, P. and Verma, A. K., 1981, The effect of supercooled liquid on film boiling about a vertical heated surface in a porous medium: Int. Jour. Heat Mass Transfer. 24, no. 7, p. 1151–1160.

    Article  Google Scholar 

  12. Hardee, H. C, 1983, Convective transport in crustal magma bodies: Jour. Vol. Geothermal Research. 19. p. 45–72.

    Article  Google Scholar 

  13. Lowell, R. P., 1985, Double-diffusive convection in partially molten silicate systems: its role during magma production and in magma chambers: Jour. Vol. Geothermal Research. 26, p. 1–24.

    Article  CAS  Google Scholar 

  14. Parmentier, E. M., 1979, Two phase natural convection adjacent to a vertical heated surface in a permeable medium: Int. Jour. Heat Mass Transfer. 22, p. 849–855.

    Article  Google Scholar 

  15. Spera, F. J., Yuen, D. A. and Kirschvink, S. J., 1982, Thermal boundary layer convection in silicic magma chambers: effects of temperature-dependent rheology and implications for thermogravitational chemical fractionation: Jour. Geophvs. Research. 87, p. 8755–8767.

    Article  Google Scholar 

  16. Bixler, N. E. and Carrigan, C. R., 1986, Enhanced heat transfer in partially-saturated hydrothermal systems: Geophys. Research Letters. 13. no. 1, p. 42–45.

    Article  Google Scholar 

  17. Nilson, R. H., McBirney, A. R. and Baker, R. H., 1985, Liquid fractionation. Part II: Fluid dynamics and quantitative implications for magmatic systems: in Baker, B. H. and McBirney, A. R., ed’s., Processes in Magma Chambers: Jour. Vol. Geothermal Research. 24, p. 25–54.

    Google Scholar 

  18. Carrigan, C. R., 1986, A two-phase hydrothermal cooling model for shallow intrusions: Jour. Vol. Geothermal Research. 28. p. 175–192.

    Article  Google Scholar 

  19. Sparrow, E. M. and Prakash, C., 1981, Interaction between internal natural convection in an enclosure and an external convection boundary-layer flow: Int. Jour. Heat Mass Transfer. 24, p. 895–907.

    Article  Google Scholar 

  20. Viskanta, R. and Lankford, D. W., 1981, Coupling of heat transfer between two natural convection systems separated by a vertical wall: Int. Jour. Heat Mass Transfer. 24, p. 1171–1177.

    Article  Google Scholar 

  21. Sahm, R. P., 1982, The role of convection in solidification, in Zierep, J. and Oertel, H., ed’s., Convective Transport and Instibilitv Phenomena. Karlsruhe: Braun, p. 515–556.

    Google Scholar 

  22. Szekely, J. and Jassal, A. S., 1978, An experimental and analytical study of the solidification of a binary dendritic system: Met. Trans., 98, p. 299–398.

    Google Scholar 

  23. Hills, R. N., Loper, D. E. and Roberts, P. H., 1983, A thermodynamically consistent model of a mushy zone: Q. Jour. Mech. Appl. Math., 26, p. 505–539.

    Article  Google Scholar 

  24. Knapp, R. B. and Norton, D., 1981, Preliminary numerical analysis of processes related to magma crystallization and stress evolution in cooling pluton environments: Am. Jour. Sci., 281. p. 35–68.

    Article  Google Scholar 

  25. Knapp, R. B. and Knight, J. E., 1977, Differential expansion of pore fluids: fracture propagation and microearthquake production in hot pluton environments: Jour. Geophvs. Research. 82, p. 2515–2522.

    Article  Google Scholar 

  26. van der Molen, I. and Paterson, M. S., 1979, Experimental deformation of paritiallymelted granite: Contrib. Mineral. Petrol., 70, p. 299–318.

    Article  Google Scholar 

  27. Lapadula, C. A. and Mueller, W. K., 1970, The effect of buoyancy on the formation of a solid deposit freezing onto a vertical surface: Int. Jour. Heat Mass Transfer. 13, p. 13–26.

    Article  Google Scholar 

  28. Szekely, J. and Chhabra, P. S., 1970, The effect of natural convection on the shape and movement of the melt-solid interface in the controlled solidification of lead: Met. Trans., 1 p. 1195–1203.

    Article  Google Scholar 

  29. Hardee, H. C, 1981, Convective heat extraction from molten magma: Jour. Vol. Geothermal Research, 10, p. 175–193.

    Article  Google Scholar 

  30. Hardee, H. C. and Dunn, J. C, 1981, Convective heat transfer in magmas near the liquidus: Jour. Vol. Geothermal Research. 10. p. 195–207.

    Article  Google Scholar 

  31. Parmentier, E. M. and Schedl, A., 1981, Thermal aureoles of igneous intrusions: some possible indications of hydrothermal convective cooling: Jour. Geology. 89, p. 1–22.

    Article  CAS  Google Scholar 

  32. Lister, C. R. B., 1983, The basic physics of water penetration into hot rock: in Rona, R. A., Bostrom, K., Laubier, L. and Smith, K. L., ed’s., Hydrothermal Processes at Seafloor Spreading Centers. Plenum Press, p. 141–168.

    Google Scholar 

  33. Norton, D. and Knapp, R., 1977, Transport phenomena in hydrothermal systems: the nature of porosity. Am. Jour. Sci., 277, p. 913–936.

    Article  Google Scholar 

  34. Bowman, J. R., O’Neil, J. R. and Essene, E. J., 1985, Contact skarn formation at Elkhorn, Montana. II: Origin and evolution of C-O-H skarn fluids: Am. Jour. Sci., 285. p. 621–660.

    Article  CAS  Google Scholar 

  35. Weber, J. E., 1975, The boundary layer regime for convection in a vertical porous layer: Int. Jour. Heat Mass Transfer., 18, p. 569–573.

    Article  Google Scholar 

  36. Hsu, C.T. and Cheng, P., 1985, The Brinkman model for natural convection about a semi-infinite verrtical flat plate in a porous medium: Int. Jour. Heat Mass Transfer., 28, p. 683–697.

    Article  Google Scholar 

  37. Gill, A. E., 1966, The boundary regime for convection in a rectangular vertical cavity: Jour. Fluid Mechanics., 26, p. 515–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Bergantz, G.W., Lowell, R.P. (1987). The Role of Conjugate Convection in Magmatic Heat and Mass Transfer. In: Loper, D.E. (eds) Structure and Dynamics of Partially Solidified Systems. NATO ASI Series, vol 125. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3587-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3587-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8104-7

  • Online ISBN: 978-94-009-3587-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics