Skip to main content

Thermal convection in an isoviscous layer and in the Earth’s mantle

  • Chapter
Very Slow Flows of Solids

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 7))

  • 163 Accesses

Abstract

The density of the solid medium has been hitherto considered as a constant. In fact, in real media it depends somewhat on pressure p because the medium always has an elastic behavior (superimposed on the viscosity that we are considering), and on temperature T.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Saltzman: Theory of thermal convection, Dover, New York (1962).

    Google Scholar 

  2. T. Hughes: Thermal activation in ice-sheets: we look but do not see, J. Glaciol., 31 (1985) pp. 39–48.

    Google Scholar 

  3. L. Knopoff: The convection current hypothesis, Rev. Geophys., 2 (1964) pp. 89–122.

    Article  Google Scholar 

  4. S. Chandrasekhar: Hydrodynamic and hydromagnetic stability, Clarendon Press, Oxford (1961).

    Google Scholar 

  5. R. Krishnamurti: On the transition to turbulent convection, J. fluid mech., 42 (1970) pp. 295–320.

    Article  Google Scholar 

  6. F. H. Busse and J. A. Whitehead: Oscillatory and collective instabilities in large Prandtl number convection, J. fluid mech., 66 (1974) pp. 67–79.

    Article  Google Scholar 

  7. J. A. Whitehead Jr.: Convection models: laboratory versus mantle, Tectonophysics, 35 (1976) pp. 215–228.

    Article  Google Scholar 

  8. P. H. Roberts: On non-linear Bénard convection. In Non-equilibrium thermodynamics, variational techniques and stability (R. J. Donnelly, R. Herman and I. Prigogine, eds.), University of Chicago Press (1966).

    Google Scholar 

  9. P. H. Roberts: Convection in horizontal layers with internal heat generaton. Theory, J. fluid mech., 30 (1967) pp. 33–49.

    Article  Google Scholar 

  10. U. R. Christensen: Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. astron. Soc., 77 (1984) pp. 343–384.

    Google Scholar 

  11. P. Olson: Mantle convection with spherical effects, J. Geophys. Res., 86, No. B6 (1981) pp. 4881–4890.

    Article  Google Scholar 

  12. D. McKenzie and F. M. Richter: Parameterized thermal convection in a layered region and the thermal history of the Earth, J. Geophys. Res., 86, No. B12 (1981) pp. 11,667–11,680.

    Article  Google Scholar 

  13. G. Schubert: Subsolidus convection in the mantle of terrestrial planets, Ann. Rev. Earth Planet. Sci., 7 (1979) pp. 289–342.

    Article  Google Scholar 

  14. V. N. Zharkov: Thermal state and thermal regime of the Earth’s interior, Phys. Earth planet. interiors, 41 (1985) pp. 133–137.

    Article  Google Scholar 

  15. W. V. R. Malkus: Outline of a theory of turbulent convection. In: Heat transfer, Pergamon Press, New York (1963) pp. 203–212.

    Google Scholar 

  16. G. O. Roberts: Fast viscous Bénard convection, Geophys. astrophys. fluid dynamics, 12 (1979) pp. 235–272.

    Article  Google Scholar 

  17. J. M. Straus: Finite amplitude doubly diffusive convection, J. fluid mech., 30 (1967) pp. 577–600.

    Article  Google Scholar 

  18. D. R. Moore and N. O. Weiss: Two-dimensional Rayleigh-Bénard convection, J. fluid mech., 58 (1973) pp. 289–312.

    Article  Google Scholar 

  19. F. H. Busse: On the stability of two-dimensional convection in a thin layer heated from below, J. math, phys., 46 (1967) pp. 140–150.

    Google Scholar 

  20. F. B. Lipps and R. C. J. Somerville: Dynamics of variable wavelength in finite amplitude Bénard convection, Phys. fluids, 14 (1971) pp. 759–761.

    Article  Google Scholar 

  21. G. T. Jarvis: Time-dependent convection in the Earth’s mantle, Phys. Earth planet. interiors, 36 (1984) pp. 305–327.

    Article  Google Scholar 

  22. G. Schubert and C. A. Anderson: Finite element calculations of very high Rayleigh number thermal convection, Geophys. J. Roy. astron. Soc., 80 (1985) pp. 575–602.

    Google Scholar 

  23. U. Hansen and A. Ebel: Experiments with a numerical model related to mantle convection: boundary layer behaviour of small-and large-scale flows, Phys. Earth planet. interiors, 36 (1984) pp. 374–390.

    Article  Google Scholar 

  24. G. T. Jarvis and W. R. Peltier: Mantle convection as a boundary layer phenomenon. Geophys. J. Roy. astron. Soc., 68 (1982) pp. 389–427.

    Google Scholar 

  25. F. Quareni and D. A. Yuen: Time-dependent solutions of mean-field equations with applications for mantle convection, Phys. Earth planet. interiors, 36 (1984) pp. 337–353.

    Article  Google Scholar 

  26. F. A. Kulacki and A. A. Emara: Steady and transient thermal convection in a fluid layer with volumetric energy sources, J. fluid mech., 83 (1977) pp. 375–395.

    Article  Google Scholar 

  27. L. Fleitout and D. A. Yuen: Steady state, secondary convection beneath lithospheric plates with temperature-and pressure-dependent viscosity, J. Geophys. Res., 89, No. B11 (1984) pp. 9227–9244.

    Article  Google Scholar 

  28. G. T. Jarvis and D. P. McKenzie: Convection in a compressible fluid with infinite Prandtl number, J. fluid mech., 96 (1980) pp. 515–583.

    Article  Google Scholar 

  29. J. C. Maxwell: What is lithosphère? EOS, 65, No. 17 (1984) pp. 321, 324–325.

    Google Scholar 

  30. P. G. Silver, R. W. Carlson, P. Bell and P. Olson: Mantle Structure and dynamics, EOS, 66 (1985) pp. 1193, 1196–1198.

    Google Scholar 

  31. D. E. Loper: A simple model of whole mantle convection, J. Geophys. Res., 90, No. B2 (1985) pp. 1809–1836.

    Article  Google Scholar 

  32. G. F. Davies: Geophysical and isotropic constraints on mantle convection: an interim synthesis, J. Geophys. Res., 89, No. B7 (1984) pp. 6017–6040.

    Article  Google Scholar 

  33. T. Spohn and G. Schubert: Modes of mantle convection and the removal of heat from the Earth’s interior, J. Geophys. Res., 87, No. B6 (1982) pp. 4682–4696.

    Article  Google Scholar 

  34. F. D. Stacey and D. E. Loper: Thermal histories of the core and mantle, Phys. Earth planet. interiors, 36 (1984) pp. 99–115.

    Article  Google Scholar 

  35. S. R. Dickman: Investigation of controversial polar motion features using homogeneous International Latitude Service data, J. Geophys. Res., 86, No. B6 (1981) pp. 4904–4912.

    Article  Google Scholar 

  36. L. M. Cathles III: The viscosity of the Earth’s mantle, Princeton Univ. Press, N.J. (1975).

    Google Scholar 

  37. R. Peltier: Dynamics of the Ice Age Earth. In: Advances in Geophysics (B. Saltzman, ed..), Academic Press, New York, 24 (1982) pp. 1–146.

    Google Scholar 

  38. B. Lago and M. Rabinowicz: Admittance for a convection in a layered spherical shell, Geophys. J. Roy. astron. Soc., 77 (1984) pp. 461–482.

    Google Scholar 

  39. B. H. Hager: Subducted slabs and the geoid: constraints on mantle rheology and flow, J. Geophys. Res., 89, No. B7 (1984) pp. 6003–6015.

    Article  Google Scholar 

  40. L. Cserepes and M. Rabinowicz: Gravity and convection in a two-layer mantle, Earth Planet. Sci. Letters, 76 (1985/86) pp. 193–207.

    Article  Google Scholar 

  41. J. -P. Poirier and R. C. Liebermann: On the activation volume for creep and its variation with depth in the Earth’s lower mantle, Phys. Earth planet. interiors, 35 (1984) pp. 283–293.

    Article  Google Scholar 

  42. G. F. Davies: Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth, J. Geophys. Res., 85, No. B5 (1980) pp. 2517–2530.

    Article  Google Scholar 

  43. M. L. Bender: Quantifying submarine hydrothermal fluxes, EOS, 65, No. 10 (1984) pp. 83, 87–88.

    Google Scholar 

  44. D. Gubbins and T. G. Masters: Driving mechanisms for the earth’s dynamo, Advances in Geophysics, Academic Press, 21 (1979) pp. 1–50.

    Google Scholar 

  45. D. E. Loper: Structure of the core and lower mantle, Advances in Geophysics, Academic Press, 26 (1984) pp. 1–34.

    Google Scholar 

  46. C. Allègre: Chemical geodynamics, Tectonophysics, 81 (1982) pp. 109–132.

    Article  Google Scholar 

  47. G. F. Davies: Earth’s neodymium budget and structure and evolution of the mantle, Nature, 290 (1981) pp. 208–213.

    Article  Google Scholar 

  48. A. Zindler, E. Jagoutz and S. Goldstein: Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective, Nature, 298 (1982) pp. 519–523.

    Article  Google Scholar 

  49. D. McKenzie and R. K. O’Nions: Mantle reservoirs and ocean island basalts, Nature, 301 (1983) pp. 229–231.

    Article  Google Scholar 

  50. C. T. Herzberg: Chemical stratification in the silica Earth, Earth Planet. Sci. Letters, 67 (1984) pp. 249–260.

    Article  Google Scholar 

  51. B. H. Hager and R. J. O’Connell: Subduction zone dip angles and flow driven by plate motion, Tectonophysics, 50 (1978) pp. 111–133.

    Article  Google Scholar 

  52. K. C. Creager and T. H. Jordan: Slab penetration into the lower mantle, J. Geophys. Res., 89, No. B5 (1984) pp. 3031–3049.

    Article  Google Scholar 

  53. A. M. Dziewonski: Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6, J. Geophys. Res., 89, No. B7 (1984) pp. 5929–5952.

    Article  Google Scholar 

  54. G. T. Jarvis: The long wavelength component of mantle convection, Phys. Earth planet. interiors, 40 (1985) pp. 24–42.

    Article  Google Scholar 

  55. U. Walzer and R. Maaz: On intermittent lower-mantle convection. In: Expanding Earth symposium, Sydney 1981 (S. W. Carey, ed.), Univ. of Tasmania (1983) pp. 329–430.

    Google Scholar 

  56. X. Le Pichon and P. Huchon: Geoid, Pangea and convection, Earth Planet. Sci. Letters, 67 (1984) pp. 123–135.

    Article  Google Scholar 

  57. P. L. McFadden and R. T. Merrill: Lower mantle convection and geomagnetism, J. Geophys. Res., 89, No. B5 (1984) pp. 3354–3362.

    Article  Google Scholar 

  58. Z. Garfunkel: Growth, shrinking, and long term evolution of plates and their implications for the flow pattern in the mantle, J. Geophys. Res., 80 (1975) pp. 4425–4432.

    Article  Google Scholar 

  59. M. Talwani, X. Le Pichon and M. Ewing: Crustal structure of the mid-ocean ridges, J. Geophys. Res., 70 (1965) pp. 341–352.

    Article  Google Scholar 

  60. C. Keen and C. Tramontini: A seismic refraction survey on the Mid-Atlantic ridge, Geophys. J. Roy. astron. Soc., 20 (1970) pp. 473–491.

    Google Scholar 

  61. F. M. Richter: Convection and the large-scale circulation of the mantle, J. Geophys. Res., 78 (1973) pp. 8735–8745.

    Article  Google Scholar 

  62. W. R. Buck and E. M. Parmentier: Convection beneath young oceanic lithosphère: implications for thermal structure and gravity, J. Geophys. Res., 91, No. B2 (1986) pp. 1961–1974.

    Article  Google Scholar 

  63. L. Fleitout and D. A. Yuen: Secondary convection and the growth of the oceanic lithosphère, Phys. Earth planet. interiors, 36 (1984) pp. 181–212.

    Article  Google Scholar 

  64. D. E. Loper and F. D. Stacey: The dynamical and thermal structure of deep mantle plumes, Phys. Earth planet. interiors, 33 (1983) pp. 304–317.

    Article  Google Scholar 

  65. D. M. Jurdy: Relative plate motions and the formation of marginal basins, J. Geophys. Res., 84, No. B12 (1979) pp. 6796–6802.

    Article  Google Scholar 

  66. J. -M. Vanpé: Thermo-mechanical convection in a subduction zone, and initiation of back-arc spreading, Annales Geophysicae, 2 (1984) pp. 343–352.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lliboutry, L.A. (1987). Thermal convection in an isoviscous layer and in the Earth’s mantle. In: Very Slow Flows of Solids. Mechanics of Fluids and Transport Processes, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3563-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3563-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8094-1

  • Online ISBN: 978-94-009-3563-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics