Skip to main content

Homogenization, and the transversely isotropic power-law viscous body

  • Chapter
Very Slow Flows of Solids

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 7))

  • 162 Accesses

Abstract

Linear elasticity is defined by a set of linear relations between stresses σ ij and strains ε ij (assumed to be very small). Using the dummy index rule:

$$ \sigma_{i\!j}\,=\,E^{h\!k}_{i\!j}\varepsilon_{h\!k} $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. N. Sneddon and D. S. Berry: The classical theory of elasticity. In Encyclopedia of Physics (S. Flügge, ed.), Springer Verlag, Berlin (1958) pp. 1–126.

    Google Scholar 

  2. L. Lliboutry and P. Duval: Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies, Annales Geophysicae, 3 (1985) pp. 207–224.

    Google Scholar 

  3. J. R. Willis: Variational and related methods for the overall properties of composites, Advances in Appl. Mech., 21 (1981) pp. 1–78.

    Article  Google Scholar 

  4. M. F. Ashby and P. Duval: The creep of polycrystalline ice, Cold Reg. Sci. Tech., 11 (1985) pp. 285–300.

    Article  Google Scholar 

  5. B. Michel: Ice mechanics, Presses de l’Université Laval, Quebec (1978).

    Google Scholar 

  6. N. K. Sinha: Short term rheology of polycrystalline ice, J. Glaciol., 21 (1978) p. 457–473.

    Google Scholar 

  7. N. K. Sinha: Grain boundary sliding in polycrystalline materials, Phil. Mag. A, 40 (1979) pp. 825–842.

    Article  Google Scholar 

  8. R. Hill: Continuum micromechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13 (1965) pp. 89–101.

    Article  Google Scholar 

  9. U. F. Kocks: The relation between polycrystal deformation and single-crystal deformation, Met. Trans., 1 (1970) pp. 1121–1143.

    Google Scholar 

  10. J. W. Hutchinson: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. Roy. Soc. London A, 348 (1976) pp. 101–127.

    Article  Google Scholar 

  11. J. W. Hutchinson: Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Met. Trans. A, 8 (1977) pp. 1465–1469.

    Article  Google Scholar 

  12. A. R. S. Ponter and F. A. Leckie: Constitutive relationships for the time-dependent deformation of metals, J. Eng. materials techn., (1976) pp. 47–51.

    Google Scholar 

  13. W. D. Means and M. W. Jessel: Accommodation migration of grain boundaries, Tectonophysics, 127 (1986) pp. 67–86.

    Article  Google Scholar 

  14. G. P. Rigsby: Crystal orientation in glacier and in experimentally deformed ice, J. Glaciol., 3 (1960) pp. 589–606.

    Google Scholar 

  15. A. V. Hershey: The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech., 21 (1954) pp. 236–240.

    Google Scholar 

  16. B. Budiansky: On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids, 13 (1965) pp. 223–227.

    Article  Google Scholar 

  17. J. D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London A, 241 (1957) pp. 376–396.

    Article  Google Scholar 

  18. A. F. Johnson: Creep characterization of transversely-isotropic metallic materials, J. Mech. Phys. Solids, 25 (1977) pp. 117–126.

    Article  Google Scholar 

  19. L. Lliboutry and I. Andermann: Extension de la loi de Norton-Hoffà un matériau orthotrope de révolution, Comptes-rendus Ac. Sci., 294 II (1982) pp. 1309–1312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lliboutry, L.A. (1987). Homogenization, and the transversely isotropic power-law viscous body. In: Very Slow Flows of Solids. Mechanics of Fluids and Transport Processes, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3563-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3563-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8094-1

  • Online ISBN: 978-94-009-3563-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics