Skip to main content

Plates and layered media

  • Chapter
Very Slow Flows of Solids

Part of the book series: Mechanics of Fluids and Transport Processes ((MFTP,volume 7))

  • 161 Accesses

Abstract

The deformation of a plate or a shell may produce large displacements, although the strains remain small. Intuitively, we must distinguish the case of plates, cylinders, and more generally, developable surfaces that may deform in plane strain or stress from the case of non-developable surfaces (called shells in mechanics), for which the problem is always three-dimensional. Only thin plates deforming in plane strain or stress, in an (x’-z’) plane, will be considered here. In this context, “thin” means that the radius of curvature of the plate always remains very large with respect to its thickness (denoted h). In this cáse, approximate equilibrium equations, that involve integrals through the whole thickness of the plate, can be written to replace the usual stress equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. I. Walcott: Flexure of the lithosphère at Hawaii, Tectonophysics, 9 (1970) pp. 435–446.

    Article  Google Scholar 

  2. W. Suyenaga: Isostasy and flexure of the lithosphère under the Hawaiian Islands, J. Geophys. Res., 84, No. B10 (1979) pp. 5599–5604.

    Article  Google Scholar 

  3. M. G. Kogan: Gravity anomalies and the origin of the Walvis ridge, J. Geophys. Res., 84, No. B11 (1979) pp. 6019–6025.

    Article  Google Scholar 

  4. J. R. Cochran: An analysis of isostasy in the world’s oceans. 2. Mid-ocean ridge crests, J. Geophys. Res., 84, No. B9 (1979) pp. 4713–4729.

    Article  Google Scholar 

  5. T. C. Hanks: The Kuril Trench-Hokkaido Rise system: large shallow earthquakes and simple models of deformation, Geophys. J. Roy. astron. Soc., 23 (1971) pp. 173–189.

    Google Scholar 

  6. A. M. Dziewonski: Upper mantle models from “pure path” dispersion data, J. Geophys. Res., 76, (1971) pp. 173–189.

    Article  Google Scholar 

  7. D. C. McAdoo and C. F. Martin: Seasat observations of lithospheric flexure seaward of trenches, J. Geophys. Res., 89, No. B5 (1984) pp. 3201–3210.

    Article  Google Scholar 

  8. A. B. Watts: An analysis of isostasy in the world’s oceans, 1, Hawaiian-Emperor seamounts chain, J. Geophys. Res., 83, No. B12 (1978) pp. 5989–6004.

    Article  Google Scholar 

  9. W. M. Chappie and D. W. Forsyth: Earthquakes and bending of plates at trenches, J. Geophys. Res., 84, No. B12 (1979) pp. 6729–6749.

    Article  Google Scholar 

  10. L. Lliboutry: Rheological properties of lithosphère, Tectonophysics, 24 (1974) pp. 13–29.

    Article  Google Scholar 

  11. D. C. McAdoo, J. G. Caldwell and D. L. Turcotte: On the elastic-perfectly plastic bending of the lithosphère under generalized loading with application to the Kurile Trench, Geophys. J. Roy. astron. Soc., 54(1978) pp. 11–26.

    Google Scholar 

  12. L. Lliboutry: Sea-floor spreading, continental drift and lithosphère sinking with an asthenosphere at melting point, J. Geophys. Res., 74 (1969) pp. 6525–6540.

    Article  Google Scholar 

  13. L. I. Lobkovsky, O. G. Sorokhtin and A. I. Shemenda: Simulation of the subduction of litho-spheric plates under island arcs (in Russian, English summary), Okeanologiya, 20 (1980) pp. 158–166.

    Google Scholar 

  14. E. R. Engdahl and C. H. Scholz: A double Benioffzone beneath the central Aleutians: an unbending of the lithosphère, Geophys. Res. Letters, 4 (1977) pp. 473–476.

    Article  Google Scholar 

  15. M. A. Biot: Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis, Geol. Soc. Amer. Bull., 72 (1961) pp. 1595–1620

    Article  Google Scholar 

  16. M. A. Biot, H. Odé and W. L. Roever: Experimental verification of the theory of folding of stratified viscoelastic media, ibid., pp. 1621–1631.

    Google Scholar 

  17. O. Stephansson and H. Berner: The finite element method in tectonic processes, Phys. Earth Planet. Interiors, 4 (1971) pp. 301–321.

    Article  Google Scholar 

  18. J. -Cl. de Bremaecker and E. B. Becker: Finite element models of folding, Tectonophysics, 50 (1978) pp. 349–367.

    Article  Google Scholar 

  19. R. K. McConnell Jr.: Isostatic adjustment in a layered earth, J. Geophys. Res., 70 (1965) pp. 5171–5188.

    Article  Google Scholar 

  20. Z. H. Alterman, H. Jarosch and C. L. Pekeris: Oscillations of the Earth, Proc. Roy. Soc. London, Ser. A, 252 (1959) pp. 80–95.

    Article  Google Scholar 

  21. B. H. Hager and R. J. O’Connell: Subduction zone dip angles and flow driven by plate motion, Tectonophysics, 50 (1978) pp. 111–133.

    Article  Google Scholar 

  22. B. H. Hager and R. J. O’Connell: A simple global model of plate dynamics and mantle convection, J. Geophys. Res., 86, No. B6 (1981) pp. 4843–4867.

    Article  Google Scholar 

  23. B. Lago and M. Rabinowicz: Admittance for a convection in a layered spherical shell, Geophys. J. Roy. astron. Soc., 77 (1984) pp. 461–482.

    Google Scholar 

  24. M. A. Richards and B. H. Hager: Geoid anomalies in a dynamic earth, J. Geophys. Res., 89, No. B7 (1984) pp. 5987–6002

    Article  Google Scholar 

  25. B. H. Hager: Subducted slabs and the geoid: constraints on mantle rheology and flow, ibid., pp. 6003–6015.

    Google Scholar 

  26. F. R. Gantmacher: The theory of matrices, translated from Russian by K. A. Hirsch, Chelsea, New York (1960), Vol. 2, pp. 101–102.

    Google Scholar 

  27. D. McKenzie: Comments on “A method of separation of true polar wander and continental drift, including results of the last 55m.y.” by D. M. Jurdy and R. Van der Voo, J. Geophys. Res., 80 (1975) pp. 3371–3372

    Article  Google Scholar 

  28. D. M. Jurdy and R. Van der Voo: Reply, ibid., pp. 3373–3374.

    Google Scholar 

  29. R. W. Simpson: Relation between a criterion for polar wander and some conditions for absolute plate motions, J. Geophys. Res., 80 (1975) pp. 4823–4824.

    Article  Google Scholar 

  30. B. Isacks, J. Oliver and L. R. Sykes: Seismology and the new global tectonics, J. Geophys. Res., 73 (1968) pp. 5855–5899.

    Article  Google Scholar 

  31. M. E. Artemjev and E. V. Artyushkov: Structure and isostasy of the Baikal rift and the mechanism of rifting, J. Geophys. Res., 76 (1971) pp. 1197–1211.

    Article  Google Scholar 

  32. T. Ichiye: Continental breakup by nonstationary mantle convection generated with differential heating of the crust, J. Geophys. Res., 76 (1971) pp. 1139–1153.

    Article  Google Scholar 

  33. D. Forsyth and S. Uyeda: On the relative importance of driving forces on plate motion, Geophys. J. Roy. astron. Soc., 43 (1975) pp. 163–200.

    Google Scholar 

  34. L. Yinting and G. Dexiang: Driving mechanism for sea floor spreading, Scientia Sinica, 22 (1979) pp. 819–834.

    Google Scholar 

  35. L. Lliboutry: The driving mechanism, its source of energy, and its evolution studied with a three-layer model, J. Geophys. Res., 77 (1972) pp. 3759–3770.

    Article  Google Scholar 

  36. L. Lliboutry: Some results on plate dynamics deduced from a three-layer model, J. Geophys. Res., 79 (1974) pp. 1230–1232.

    Article  Google Scholar 

  37. L. Lliboutry: Plate movement relative to rigid lower mantle, Nature, 250 (1974) pp. 298–300.

    Article  Google Scholar 

  38. J. -B. Minster and T. H. Jordan: Present-day plate motions, J. Geophys. Res., 83, No. B11 (1978) pp. 5331–5354.

    Article  Google Scholar 

  39. S. C. Solomon and N. H. Sleep: Some simple physical models for absolute plate motions, J. Geophys. Res., 79 (1974) pp. 2557–2567.

    Article  Google Scholar 

  40. W. M. Kaula: Absolute plate motions by boundary velocity minimizations, J. Geophys. Res., 80 (1975) pp. 61–88.

    Google Scholar 

  41. F. M. Richter: On the driving mechanism of plate tectonics, Tectonophysics, 38 (1977) pp. 61–88.

    Article  Google Scholar 

  42. E. M. Parmentier and J. E. Oliver: A study of shallow flow due to the accretion and subduction of lithospheric plates, Geophys. J. Roy. astron. Soc., 57 (1979) pp. 1–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Lliboutry, L.A. (1987). Plates and layered media. In: Very Slow Flows of Solids. Mechanics of Fluids and Transport Processes, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3563-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3563-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8094-1

  • Online ISBN: 978-94-009-3563-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics