Skip to main content

Processing of Mineral Ores by Modern Magnetic Separation Techniques

  • Chapter
Mineral Processing Design

Part of the book series: NATO ASI Series ((NSSE,volume 122))

Abstract

A review is given of the current state of development of magnetic separation technology in relation to the field of mineral processing. The subject matter is classified in terms of separation devices based upon particle entrapment and upon particle deflection. Of these particular mention is made of the Jones and of the Kolm-Marston separators (particle entrapment) and also of open gradient magnetic separation (particle deflection).

An assesment is made of the influence of cryogenic magnets on the development of this technology and some reference is also made to unit process costs for the various devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dean, R.S. and C.W. zDavis. Magnetic Separation of Ores. (Bureau of Mines Bulletin 425, U.S. Dept. of the Interion, 1941).

    Google Scholar 

  2. Taggart, A.F. Elements of Ore Dressing. (New York, John Wiley, 1951).

    Google Scholar 

  3. Pryor, E.J. Mineral Processing, (New York, Elsevier, 1965).

    Google Scholar 

  4. Parker, M.R. The Physics of Magnetic Separation. Contemp. Phys. (1977) 279–306.

    Google Scholar 

  5. De Vaney, F.D. New Developments in the Magnetic Concentration of Iron Ores. 5th Int. Minerals Processing Cong., London (1960) 745–749.

    Google Scholar 

  6. Jones, G.H. British Patent No. 768, 451 (1955).

    Google Scholar 

  7. Jones, G.H. Wet Magnetic Separator for Feebly Magnetic Minerals. Proc 7th Int. Minerals. Processing (org. (1964) 717–732.

    Google Scholar 

  8. Bartnik, J.A., H.-D. Wasmuth and W.H. Zabel. Production of Coarse Grained Iron Ore Sinter Feed Using The Jones WHIMS. Sonderdruck aus Zeitschrift. Auf. Technik. Sept. (1982) S490–497.

    Google Scholar 

  9. K.H.D. Industrieanlagen A.G. Publication No. 4-720e.

    Google Scholar 

  10. Kolm, H.H. U.S. Patent No. 3567026 (1971).

    Google Scholar 

  11. Marston, P.G. U.S. Patent No. 3627678 (1971).

    Google Scholar 

  12. Gerber, R. Some Aspects of the Present Status of HGMS. I.E.E.E. Trans.on Magn. vol MAG-18 (1982) 812–816.

    Article  Google Scholar 

  13. Eriez Magnetics Publication No. 0TB-510A (1981)

    Google Scholar 

  14. Sala Magnetics Inc. Bulletin No. 24200107-7715GB (1977).

    Google Scholar 

  15. Robinson, G.Y. and P.G. Marston. Application of High Gradient Magnetic Separation to Clay Beneficiation. Proc. of Int. Clay Conference, Mexico City, July 1985.

    Google Scholar 

  16. Parker, M.R. Use of Superconducting Magnets in Magnetic Separation. J. de Physique. Vol. Colloque C1, supplement au No. 1 (1984) C1-753-C1-758.

    Google Scholar 

  17. Van Driel, C.P., C.B.W. Kerkdijk, H.R. Segal and J. Sikkenga. Coal Cleaning by HGMS. VMF-Stork, FDO and Holec Netherland Publication. August 1983.

    Google Scholar 

  18. See concluding section.

    Google Scholar 

  19. Riley, P.W. and D. Hocking. A Reciprocating Canister Superconducting Magnetic Separator. I.E.E.E. Trans, on Magn. Vol. MAG-17 (1981) 3299–3301.

    Article  Google Scholar 

  20. Watson, J.H.P. Seminar, Univ. of Nijmegen, July 11 (1983).

    Google Scholar 

  21. Gillet, G., R. Houot and G. zLeschevin. Magnetic Separation with a Superconducting Solenoid Type Magnetic Separator Applied to Mineral Processing. Proc. Int. Symp. on Electrical and Magnetic Separation and Filtration Technology, Antwerp (1984) 97–108.

    Google Scholar 

  22. Watson, J.H.P., D. Rassi, D. Prothero and R. Potts. High Gradient Magnetic Separation of Uranium Oxide and Gold from Mine Residues. Proc. Int. Symp. on Electrical and Magnetic Separation and Filtration Technology, Antwerp (1984) 93–96.

    Google Scholar 

  23. Sala Magnetics Inc. Bulletin No. S79-0001 (1979).

    Google Scholar 

  24. Roux, E.H., J.G. Goodey, E.F. Wepener and K.R. Hodierne. Industrial Scale Dry Beneficiation of Phosphate-Bearing Pyroxenite Ore. Proc. of Mintek 50, Randburg, S. Africa (1984).

    Google Scholar 

  25. Parker, M.R. Recent Developments in High Field Magnetic Separation. Proc. Int. Symp. on Electrical and Magnetic Separation and Filtration Technology, Antwerp (1984)1–13.

    Google Scholar 

  26. Maxwell, E. Magnetic Separation. The Prospects for Superconductivity. Cryogenics (1975) 179–184.

    Google Scholar 

  27. Cohen, H.E. and J.A. Good. Principles, Design and Performance of a Superconducting Magnet System for Mineral Separation in Magnetic Fields of High Intensity. 11th Int. Mineral. Proc. Conf. Cagliori (1975) 773–793.

    Google Scholar 

  28. Schonert, K., A. Supp and H. Dorr, 12th Int. Minerals Processing Cong. Sao Paulo, Brazil (1977) paper No. 1, Meeting No. 4.

    Google Scholar 

  29. Collan, H.K., M.A. Kokkala, T. Meinandeor and D.E. Toikka, Superconducting Open-Gradient Magnetic Separator. Trans. Inst. Min. Metall. Vol. 91 (1982) C5–C8.

    Google Scholar 

  30. Kopp, J. and J.A. Good. The Physics of High Intensity Dry Magnetic Separation. Vol. MAG-18 (1982) 833–835.

    Google Scholar 

  31. Kopp, J. The Physics of “Falling Curtain” Dry Magnetic Separation. Int.J. of Min.Proc. Vol. 10 (1983) 297–308.

    Article  Google Scholar 

  32. Male, S.F. (private comm.)

    Google Scholar 

  33. Cohen, H.E., S. Roberts and N. Kerley. A New Superconducting Magnet System for High Intensity Magnetic Separation. Proc. Int.Symp. on Electrical and Magnetic Separation and Filtration Technology. Antwerp (1984) 85–92.

    Google Scholar 

  34. Good, J.A. and K. White. The Design and Construction of a Superconducting Magnet for Production Scale Dry Separation of Minerals. Proc. Mintek 50, Randburg, S. Africa (1984).

    Google Scholar 

  35. Ries, G., K.-P. Jungst, S. Forster, W. Lehmann and K.-H. Unkelbach, West German Patent No. 2650540 (1978).

    Google Scholar 

  36. Full details will be presented by K.H.D. Humboldt Wedag A.G. at the Int. Mineral Proc. Congress, June 1985 (Cannes).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Parker, M.R. (1987). Processing of Mineral Ores by Modern Magnetic Separation Techniques. In: Yarar, B., Dogan, Z.M. (eds) Mineral Processing Design. NATO ASI Series, vol 122. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3549-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3549-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8087-3

  • Online ISBN: 978-94-009-3549-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics