Skip to main content

3-D Display

  • Chapter
  • 293 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 119))

Abstract

The sampling of data in Medical Imaging is, of its essence, 3-dimensional. 3-D displays can be classified into groups as follows: the use of colour as a depth cue, 2-D representations of 3-D objects using shaded surfaces, stereo pairs, holograms, time coding and depth cueing, the varifocal (vibrating) mirrors and other mechanical systems, and, finally, true 3-D displays. Brief descriptions of some algorithms for the production of stereo pairs, the use of the kinetic depth effect, and shaded graphics are presented. A fundamental problem is that of the perception of interior structures, which implies the use of interaction, for example, by selective high-lighting and elimination of concealing structures. The volume of data generated by current systems is so large, that a fast powerful 3-D display is essential. Some suitable architectures are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   909.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Herman, G.T. and D. Webster. Surfaces of organs in discrete three-dimensional space. In ‘Mathematical Aspects of Computerized Tomography’ Eds Herman G.T. and Natterer F., (Springer Verlag, Berlin, 1981) pp. 204–224.

    Google Scholar 

  2. Herman, G.T. and H.K. Liu. Three-dimensional display of human organs from computed tomograms. Comp. Graph, and Image Processing 9 (1979) 1–21.

    Article  CAS  Google Scholar 

  3. Frieder, G., Faux, I.D., Ostowski, M.C. and K.G. Pasquill. Back-to-front display of voxel-based objects. IEEE Comp. Graph, and Applications 5 (1985) 52–60.

    Article  Google Scholar 

  4. Sunguroff, A. and D. Greenberg. Computer generated images for medical applications. Computer Graphics, Proc Siggraph 78, 12 (1978) 196–202.

    Article  Google Scholar 

  5. Vannier M.W., Marsh J. L. and J. O. Warren. Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation. Radiology 150 (1983) 179–184.

    Google Scholar 

  6. Vannier M.W., Marsh J. L. and J. O. Warren. Three dimensional computer graphics for craniofacial surgical planning and evaluation. Computer Graphics 17 (1983) Proc. Siggraph ’83 263–273.

    Article  Google Scholar 

  7. Bookstein, F.L. The line skeleton. Comp. Graph, and Luage Processing 11 (1979) 123–137

    Article  Google Scholar 

  8. Nackman, L.R. and S.M. Pizer. Three-dimensional shape description using the symmetric axis transform. In Medical Image Processing, ed Goris, M.L., (Stanford University, Div. Nucl. Med. Stanford, 1981) 363–396.

    Google Scholar 

  9. Di Paola, R. Personal communication

    Google Scholar 

  10. Fuchs, H., Abram, G.D. and E.D. Grant. Near real-time shaded display of rigid objects. Computer Graphics 17 (1983) 65–72.

    Article  Google Scholar 

  11. Artzy E. Frieder G. and G.T. Herman. The theory, design, implementation and evaluation of a three-dimensional surface detection algorithm. Comput. Graph, and Image. Proc. 15 (1981) 1–24.

    Article  Google Scholar 

  12. Rhodes M.L. Towards fast edge detection for clinical 3-D applications of computer tomography. IEEE CH1404 (1979) 321–327.

    Google Scholar 

  13. Meagher D. High speed display of 3-D medical images using octree encoding. IPL-TR-021 Image Processing Lab. Ressenlaer Polytechnique Inst. (1981).

    Google Scholar 

  14. Meagher D.J. Interactive solids processing for medical analysis and planning. Proc. Natl. Computer Graphics Assoc. (1984)

    Google Scholar 

  15. Meagher, D. Geometric modeling using octree encoding. Comp. Graph, and Image Processing 19 129–147 1982.

    Article  Google Scholar 

  16. Fuchs H., Kedem Z.M. and S.P. Uselton. Optimal surface reconstruction from planar contours. Comm. A.C.M. 20 (1977) 56–58.

    Google Scholar 

  17. Zucker, S.W. and R.A. Hummel. A three-dimensional edge operator. IEEE Trans. Pat. Anal, and Mach. Intel. PAMI-3 (1981) 324–331.

    Article  Google Scholar 

  18. Akima H. A new method of interpolation and smooth surface fitting based on local procedures. J. A.C.M. 13 (1970) 589–602.

    Google Scholar 

  19. Sutherland, I.E., Sproull, R.F. and R.A. Schumacker. A characterization of ten hidden surface algorithms. Computing Surveys 6 1974.

    Google Scholar 

  20. Gourand H. Computer display of curved surfaces. IEEE Trans. Computers C-20 (1971) 623–629.

    Article  Google Scholar 

  21. Phong B.T. Illumination for computer generated pictures. Comm. A.C.M. 18 (1975) 311–317.

    Google Scholar 

  22. Barber, D.C. and I. Skellas. Three-dimensional display of tomographic data. Clin. Phys. Physiol. Meas. 2 (1981) 153–155.

    Article  PubMed  CAS  Google Scholar 

  23. Greguss P. Holographic displays from computer assisted tomography. J. Comp. Ass. Tomography. 1 (1977) 184–186.

    Article  CAS  Google Scholar 

  24. Exhibition and Symposium on 3-D Imaging, 3rd World Congress of Nuclear Medicine and Biology, August 1982, Paris, France.

    Google Scholar 

  25. Pizer, S.M., Fuchs, H., Heinz, E.R., Staab E.V., et al, Interactive 3D display of medical images. In Information Processing in Medical Imaging, ed Deconinck F., (Nijhoff, Boston, 1984) 513–526.

    Google Scholar 

  26. Bradley H., Moore P.R. and E.A. Woloshuk. Time as depth. Handout and exhibit 27th Soc. Nucl. Med. meeting Detroit 1980.

    Google Scholar 

  27. Real-time solid modeling system: Insight. Phoenix data systems Inc. Albany N.Y., USA.

    Google Scholar 

  28. Flynn M., Matteson R., Dickie D., Keyes J. W. and F. Bookstein. Requirements for the display and analysis of three-dimensional image data. SPIE 418 Picture Archiving and Communication systems (1983) 213–224.

    Google Scholar 

  29. Goldwasser, S.M. A generalized object display processor architecture. IEEE Comp. Graph, and Applications. 4 (1984) 43–55.

    Article  Google Scholar 

  30. Artzy E. Display of three-dimensional information in computed tomography. Comp. Graph. and Image Processing 9 (1979) 196–198.

    Article  Google Scholar 

  31. Kramer D.M. Schneider J. S., Rudin A.M. et al. True three dimensional nuclear magnetic resonance images of a brain. Neuroradiology 21 (1981) 239–244.

    Article  PubMed  CAS  Google Scholar 

  32. Schlusselberg, D.S., Smith W.K., Lewis, M.H., Culter, B.G. and D.J. Woodward. A general system for computer based acquisition analysis and display of medical image data. Proc. ACM Ann. Meeting Oct 1982, 18–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Todd-Pokropek, A. (1987). 3-D Display. In: Guzzardi, R. (eds) Physics and Engineering of Medical Imaging. NATO ASI Series, vol 119. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3537-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3537-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8081-1

  • Online ISBN: 978-94-009-3537-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics